New technique for high resolution imaging of brain connections

MIT researchers have proposed a new technique that leads to very high resolution images of the detailed connections of neurons in the human brain. Taeyun Ku, Justin Swaney and Jeong-Yoon Park were the lead researchers of the work published in a Nature Biotechnology article. They have developed a new technique for imaging brain tissue at multiple scales that leads to unprecedented high resolution images of significant regions of the brain, which allows them to detect the presence of proteins within cells and determine the long-range connections between neurons.

The technique actually blows up the size of the tissues under observation, increasing their dimension, while preserving nearly all of the proteins within the cells, which can be labeled with fluorescent molecules and imaged.

The technique floods the brain tissue with acrylamide polymers, which end up forming a dense gel. The proteins are attached to this gel and, after they are denatured, the gel can be expanded to four or five times its original size. This leads to the possibility of imaging the blown-up tissue with a resolution that is much higher than would be possible if the original tissue was used.

Techniques like create the conditions to advance with reverse engineering techniques that could lead to a better understanding of the way neurons connect with each other, creating the complex structures in the brain.

Image credit: MIT