The Computer and the Brain

The Computer and the Brain, first published in 1958, is a delightful little book by John von Neumman, his attempt to compare two very different information processing devices: computers and brains. Although written more than sixty years ago, it has more than historic interest, even though it addresses two topics that have developed enormously in the decades since von Neumann’s death.

John von Neumann’s genius comes through very clearly in this essay. Sixty years ago, very few persons knew what a computer was, and probably even less had some idea how the brain performed its magic. This book, written just a few years after the invention of the transistor (by Bardeen and Brattain), and the discovery of the membrane mechanisms that explain the electrical behaviour of neurons (by Hodgkin and Huxley), nonetheless compares, in very clear terms, the relative computational power of computers and brains.

Von Neumann aim is to compare many of the characteristics of the processing devices used by computers (vacuum tubes and transistors) with the ones used by the brain (neurons). His objective is to perform an objective comparison of the two technologies, as of their ability to process information. He addresses speed, size, memory and other characteristics of the two types of information processing devices.

One of the central and (to me) most interesting parts of the book is the comparison of artificial information processing devices (vacuum tubes and transistors) with natural information processing devices (neurons), in terms of speed and size.

Von Neumman concludes that vacuum tubes and transistors are faster, by a factor of 10,000 to 100,000, than neurons, and occupy about 1000 times more space (with the technologies of the day). All together, if one assumes that speed can be traded by number of devices (for instance, reusing electronic devices to perform computations that, in the brain, are performed by slower, but independent, neurons), his comparisons lead to the conclusion (not explicit in the book, I must add) that an electronic computer the size of a human brain would be one to two orders of magnitude less powerful than the human brain itself.

John von Neumann could not have predicted, in 1957, that transistors would be packed, by the billions, on integrated circuits no larger than a postal stamp. If one uses the numbers that correspond to the technologies of today, one is led to conclude that a modern CPU (such as the Intel Core i7), with a billion transistors, operating in the nanoseconds range, is a few orders of magnitude (10000 times) more powerful than the human brain, with its hundred billion neurons operating in the milliseconds range.

Of course one has to consider, as John von Neumann also wrote, that a neuron is considerably more complex and can perform more complex computations than a transistor. But even if one takes that into account, and assumes that a transistor is roughly equivalent to a synapse, in raw computing power, one gets the final result that the human brain and an Intel Core i7 have about the same raw processing power.

It is a sobering thought, one which von Neumann would certainly have liked to share.