Homo Deus: A Brief History of Tomorrow

Homo Deus, the sequel to the wildly successful hit Sapiens, by Yuval Harari, aims to chronicle the history of tomorrow and to provide us with a unique and dispassionate view of the future of humanity. In Homo Deus, Harari develops further the strongest idea in Sapiens, the idea that religions (or shared fictions) are the reason why humanity came to dominate the world.

Many things are classified by Harari as religions, from the traditional ones like Christianism, Islamism or Hinduism, to other shared fictions that we tend not to view as religions, such as countries, money, capitalism, or humanism. The ability to share fictions, such as these, created in Homo sapiens the ability to coordinate enormous numbers of individuals in order to create vast common projects: cities, empires and, ultimately, modern technology. This is the idea, proposed in Sapiens, that Harari develops further in this book.

Harari thinks that, with the development of modern technology, humans will doggedly pursue an agenda consisting of three main goals: immortality, happiness and divinity. Humanity will try to become immortal, to live in constant happiness and to be god-like in its power to control nature.

The most interesting part of the book is in middle, where Harari analyses, in depth, the progressive but effective replacement of ancient religions by the dominant modern religion, humanism. Humanism, the relatively recent idea that there is a unique spark in humans, that makes human life sacred and every individual unique. Humanism therefore believes that meaning should be sought in the individual choices, views, and feelings, of humans, replaced almost completely traditional religions (some of them with millennia), which believed that meaning was to be found in ancient scriptures or “divine” sayings.

True, many people still believe in traditional religions, but with the exception of a few extremist sects and states, these religions plays a relatively minor role in conducting the business of modern societies. Traditional religions have almost nothing to say about the key ideas that are central to modern societies, the uniqueness of the individual and the importance of the freedom of choice, ideas that led to our current view of democracies and ever-growing market-oriented economies. Being religious, in the traditional sense, is viewed as a personal choice, a choice that must exist because of the essential humanist value of freedom of choice.

Harari’s description of the humanism schism, into the three flavors of liberal humanism, socialist humanism, and evolutionary humanism (Nazism and other similar systems), is interesting and entertaining. Liberal humanism, based on the ideals of free choice, capitalism, and democracy, has been gaining the upper hand in the twentieth century, with occasional relapses, over socialism or enlightened dictatorships.

The last part of the book, where one expects Harari to give us a hint of what may come after humanism, once technology creates systems and machines that make humanist creeds obsolete, is rather disappointing. Instead of presenting us with the promises and threats of transhumanism, he clings to common clichés and rather mundane worries.

Harari firmly believes that there are two types of intelligent systems: biological ones, which are conscious and have, possibly, some other special properties, and the artificial ones, created by technology, which are not conscious, even though they may come to outperform humans in almost every task. According to him, artificial systems may supersede humans in many jobs and activities, and possibly even replace humans as the intelligent species on Earth, but they will never have that unique spark of consciousness that we, humans, have.

This belief leads to two rather short-sighted final chapters, which are little more than a rant against the likes of Facebook, Google, and Amazon. Harari is (and justifiably so) particularly aghast with the new fad, so common these days, of believing that every single human experience should go online, to make shareable and give it meaning. The downsize is that this fad provides data to the all-powerful algorithms that are learning all there is to know about us. I agree with him that this is a worrying trend, but viewing it as the major threat of future technologies is a mistake. There are much much more important issues to deal with.

It is not that these chapters are pessimistic, even though they are. It is that, unlike in the rest of Homo Deus (and in Sapiens), in these last chapters Harari’s views seem to be locked inside a narrow and traditionalist view of intelligence, society, and, ultimately, humanity.

Other books, like SuperintelligenceWhat Technology Wants or The Digital Mind provide, in my opinion, much more interesting views on what a transhumanist society may come to be.

Europe wants to have one exascale supercomputer by 2023

On March 23rd, in Rome, seven European countries signed a joint declaration on High Performance Computing (HPC), committing to an initiative that aims at securing the required budget and developing the technologies necessary to acquire and deploy two exascale supercomputers, in Europe, by 2023. Other Member States will be encouraged to join this initiative.

Exascale computers, defined as machines that execute 10 to the 18th power operations per second will be roughly 10 times more powerful than the existing fastest supercomputer, the Sunway TaihuLight, which clocks in at 93 petaflop/s, or 93 times 10 to the 15 floating point operations per second. No country in Europe has, at the moment, any machine among the 10 most powerful in the world. The declaration, and related documents, do not fully specify that these machines will clock at more than one exaflop/s, given that the requirements for supercomputers are changing with the technology, and floating point operations per second may not be the right measure.

This renewed interest of European countries in High Performance Computing highlights the fact that this technology plays a significant role in the economic competitiveness of research and development. Machines with these characteristics are used mainly in complex system simulations, in physics, chemistry, materials, fluid dynamics, but they are also useful in storing and processing the large amounts of data required to create intelligent systems, namely by using deep learning.

Andrus Ansip, European Commission Vice-President for the Digital Single Market remarked that: “High-performance computing is moving towards its next frontier – more than 100 times faster than the fastest machines currently available in Europe. But not all EU countries have the capacity to build and maintain such infrastructure, or to develop such technologies on their own. If we stay dependent on others for this critical resource, then we risk getting technologically ‘locked’, delayed or deprived of strategic know-how. Europe needs integrated world-class capability in supercomputing to be ahead in the global race. Today’s declaration is a great step forward. I encourage even more EU countries to engage in this ambitious endeavour”.

The European Commission press release includes additional information on the next steps that will be taken in the process.

Photo of the signature event, by the European Commission. In the photo, from left to right, the signatories: Mark Bressers (Netherlands), Thierry Mandon (France), Etienne Schneider (Luxembourg), Andrus Ansip (European Commission), Valeria Fedeli (Italy), Manuel Heitor (Portugal), Carmen Vela (Spain) and Herbert Zeisel (Germany).


The Digital Mind: How Science is Redefining Humanity

Following the release in the US,  The Digital Mind, published by MIT Press,  is now available in Europe, at an Amazon store near you (and possibly in other bookstores). The book covers the evolution of technology, leading towards the expected emergence of digital minds.

Here is a short rundown of the book, kindly provided by yours truly, the author.

New technologies have been introduced in human lives at an ever increasing rate, since the first significant advances took place with the cognitive revolution, some 70.000 years ago. Although electronic computers are recent and have been around for only a few decades, they represent just the latest way to process information and create order out of chaos. Before computers, the job of processing information was done by living organisms, which are nothing more than complex information processing devices, created by billions of years of evolution.

Computers execute algorithms, sequences of small steps that, in the end, perform some desired computation, be it simple or complex. Algorithms are everywhere, and they became an integral part of our lives. Evolution is, in itself, a complex and long- running algorithm that created all species on Earth. The most advanced of these species, Homo sapiens, was endowed with a brain that is the most complex information processing device ever devised. Brains enable humans to process information in a way unparalleled by any other species, living or extinct, or by any machine. They provide humans with intelligence, consciousness and, some believe, even with a soul, a characteristic that makes humans different from all other animals and from any machine in existence.

But brains also enabled humans to develop science and technology to a point where it is possible to design computers with a power comparable to that of the human brain. Artificial intelligence will one day make it possible to create intelligent machines and computational biology will one day enable us to model, simulate and understand biological systems and even complete brains with unprecedented levels of detail. From these efforts, new minds will eventually emerge, minds that will emanate from the execution of programs running in powerful computers. These digital minds may one day rival our own, become our partners and replace humans in many tasks. They may usher in a technological singularity, a revolution in human society unlike any other that happened before. They may make humans obsolete and even a threatened species or they make us super-humans or demi-gods.

How will we create these digital minds? How will they change our daily lives? Will we recognize them as equals or will they forever be our slaves? Will we ever be able to simulate truly human-like minds in computers? Will humans transcend the frontiers of biology and become immortal? Will humans remain, forever, the only known intelligence in the universe?


Artificial Intelligence developments: the year in review

TechCrunch, a popular site dedicated to technology news, has published a list of the the top Artificial Intelligence news of 2016.

2016 seems indeed to have been the year Artificial Intelligence (AI) left the confinement of university labs to come into public view.


Several of the news selected by TechCrunch, were also covered in this blog.

In March a Go playing program, developed by Google’s DeepMind, AlphaGo, defeated 18-time world champion Lee Sedol (reference in the TechCrunch review).

Digital Art, where deep learning algorithms learn to paint in the style of a particular artist, was also the topic of one post (reference in the TechCrunch review).

In May, Digital Minds posted Moore’s law is dead, long live Moore´s law, describing how Google’s new chip can be used to run deep learning algorithms using Google’s TensorFlow (related article in the TechCrunch review).

TechCrunch has identified a number of other relevant developments that make for an interesting reading, including the Facebook-Amazon-Google-IBM-Microsoft mega partnership on AI, the Facebook strategy on AI and the news about the language invented by Google’s translation tool.

Will the AI wave gain momentum in 2017, as predicted by this article? I think the chances are good, but only the future will tell.

Algorithms to live by: the computer science of human decisions

This delightful book, by Brian Christian and Tom Griffiths, provides a very interesting and orthogonal view on the role of computer science in our everyday lives.

The book covers a number of algorithms, which range from the best way to choose a bride (check the first 37% of the available candidates and pick the first one that is better than them) to the best way to manage your email ( just drop messages once you are over the top, don’t queue them for future processing, which will never happen).


The book makes for a very enjoyable and engaging read, and should be required material for any computer science student, professor, or researcher.

The chapters include advice on when to stop looking for the best person for the job (e.g., your bride); how to manage the explore vs. exploit dilemma, as in picking the best restaurant for dinner; how to sort things in your closet; how to make sure the things you need frequently are nearby (caching); how to choose the things you should do first; how to predict the future (use Bayes’ rule); how to avoid overfitting and learn from the past; how to tackle difficult problems by looking at easier versions of them (relaxations); when rolling a dice is the best way to make a decision; how to handle long queues of requests, which are above and beyond your capacity; and how to avoid the tragedy of the commons that so commonly gets all of us into trouble, as in the prisoner’s dilemma.

Definitely, two thumbs up!