The last invention of humanity

Irving John Good was a British mathematician who worked with Alan Turing in the famous Hut 8 of Bletchley Park, contributing to the war effort by decrypting the messages coded by the German enigma machines. After that, he became a professor at Virginia Tech and, later in life, he was a consultant for the cult movie 2001: A Space Odyssey, by Stanley Kubrick.

Irving John Good (born Isadore Jacob Gudak to a Polish jewish family) is credited with coining the term intelligence explosion, to refer to the possibility that a super-intelligent system may, one day, be able to design an even more intelligent successor. In his own words:

Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an ‘intelligence explosion,’ and the intelligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever make, provided that the machine is docile enough to tell us how to keep it under control.

We are still very far from being able to design an artificially intelligent (AI)  system that is smart enough to design and code even better AI systems. Our current efforts address very narrow fields, and obtain systems that do not have the general intelligence required to create the phenomenon I. J. Good was referring to. However, in some very restrict domains, we can see at work mechanisms that resemble the that very same phenomenon.

Go is a board game, very difficult to master because of the huge number of possible games and high number of possible moves at each position. Given the complexity of the game, branch and bound approaches could not be used, until recently, to derive good playing strategies. Until only a few years ago, it was believed that it would take decades to create a program that would master the game of Go, at a level comparable with the best human players.

In January 2016, DeepMind, an AI startup (which was at that time acquired by Google by a sum reported to exceed 500M dollars), reported in an article in Nature that they had managed to master the complex game of Go by using deep neural networks and a tree search engine. The system, called AlphaGo, was trained on databases of human games and eventually managed to soundly beat the best human players, becoming the best player in the world, as reported in this blog.

A couple of weeks ago, in October of 2017, DeepMind reported, in a second article in Nature, that they programmed a system, which became even more proficient at the game, that mastered the game without using any human knowledge. AlphaGo Zero did not use any human games to acquire knowledge about the game. Instead, it played millions of games (close to 30 millions, in fact, played over a period of 40 days) against another version of itself, eventually acquiring knowledge about tactics and strategies that have been slowly created by the human race for more than two millennia. By simply playing against itself, the system went from a child level (random moves) to a novice level to a world champion level. AlphaGo Zero steamrolled the original AlphaGo by 100 to 0,  showing that it is possible to obtain super-human strength without using any human generated knowledge.

In a way, the computer improved itself, by simply playing against itself until it reached perfection. Irving John Good, who died in 2009, would have liked to see this invention of mankind. Which will not be the last, yet…

Picture credits: Go board, picture taken by Hoge Rielen, available at Wikimedia Commons.

 

Advertisements

AIs running wild at Facebook? Not yet, not even close!

Much was written about two Artificial Intelligence systems developing their own language. Headlines like “Facebook shuts down down AI after it invents its own creepy language” and “Facebook engineers panic, pull plug on AI after bots develop their own language” were all over the place, seeming to imply that we were just at the verge of a significant incident in AI research.

As it happens, nothing significant really happened, and these headlines are only due to the inordinate appetite of the media for catastrophic news. Most AI systems currently under development have narrow application domains, and do not have the capabilities to develop their own general strategies, languages, or motivations.

To be fair, many AI systems do develop their own language. Whenever a neural network is trained to perform pattern recognition, for instance, a specific internal representation is chosen by the network to internally encode specific features of the pattern under analysis. When everything goes smoothly, these internal representations correspond to important concepts in the patterns under analysis (a wheel of car, say, or an eye) and are combined by the neural network to provide the output of interest. In fact, creating these internal representations, which, in a way, correspond to concepts in a language, is exactly one of the most interesting features of neural networks, and of deep neural networks, in particular.

Therefore, systems creating their own languages are nothing new, really. What happened with the Facebook agents that made the news was that two systems were being trained using a specific algorithm, a generative adversarial network. When this training method is used, two systems are trained against each other. The idea is that system A tries to make the task of system B more difficult and vice-versa. In this way, both systems evolve towards becoming better at their respective tasks, whatever they are. As this post clearly describes, the two systems were being trained at a specific negotiation task, and they communicated using English words. As the systems evolved, the systems started to use non-conventional combinations of words to exchange their information, leading to the seemingly strange language exchanges that led to the scary headlines, such as this one:

Bob: I can i i everything else

Alice: balls have zero to me to me to me to me to me to me to me to me to

Bob: you i everything else

Alice: balls have a ball to me to me to me to me to me to me to me to me

Strange as this exchange may look, nothing out of the ordinary was really happening. The neural network training algorithms were simply finding concept representations which were used by the agents to communicate their intentions in this specific negotiation task (which involved exchanging balls and other items).

The experience was stopped not because Facebook was afraid that some runaway explosive intelligence process was underway, but because the objective was to have the agents use plain English, and not a made up language.

Image: Picture taken at the Institute for Systems and Robotics of Técnico Lisboa, courtesy of IST.

Stuart Russell and Sam Harris on The Dawn of Artificial Intelligence

In one of the latest episodes of his interesting podcast, Waking Up , Sam Harris discusses with Stuart Russell the future of Artificial Intelligence (AI).

Stuart Russel is one of the foremost world authorities on AI, and author of the most widely used textbook on the subject, Artificial Intelligence, a Modern Approach. Interestingly, most of the (very interesting) conversation focuses not so much on the potential of AI, but on the potential dangers of the technology.

Many AI researchers have dismissed offhand the worries many people have expressed over the possibility of runaway Artificial Intelligence. In fact, most active researchers know very well that most of the time is spent worrying about the convergence of algorithms, the lack of efficiency of training methods, or in difficult searches for the right architecture for some narrow problem. AI researchers spend no time at all worrying about the possibility that the systems they are developing will, suddenly, become too intelligent and a danger to humanity.

On the other hand, famous philosophers, scientists and entrepreneurs, such as Elon Musk, Richard Dawkins, Bill Gates, and Nick Bostrom have been very vocal about the possibility that man-made AI systems may one day run amok and become a danger to humanity.

From this duality one is led to believe that only people who are away from the field really worry about the possibility of dangerous super-intelligences. People inside the field pay little or no attention to that possibility and, in many cases, consider these worries baseless and misinformed.

That is why this podcast, with the participation of Stuart Russell, is interesting and well worth hearing. Russell cannot be accused of being an outsider to the field of AI, and yet his latest interests are focused on the problem of making sure that future AIs will have their objectives closely allied with those of the human race.

The wealth of humans: work and its absence in the twenty-first century

The Wealth of Humans, by Ryan Avent, a senior editor at The Economist, addresses the economic and social challenges imposed on societies by the rapid development of digital technologies.  Although the book includes an analysis of the mechanisms, technologies, and effects that may lead to massive unemployment, brought by the emergence of digital technologies, intelligent systems, and smart robots, the focus is on the economic and social effects of those technologies.

The main point Avent makes is that market mechanisms may be relied upon to create growth and wealth for society, and to improve the average condition of humans, but cannot be relied upon to ensure adequate redistribution of the generated wealth. Left to themselves, the markets will tend to concentrate wealth. This happened in the industrial revolution, but society adapted (unions, welfare, education) to ensure that adequate redistribution mechanisms were put in place.

To Avent, this tendency towards increased income asymmetry, between the top earners and the rest, which is already so clear, will only be made worst by the inevitable glut of labor that will be created by digital technologies and artificial intelligence.

There are many possible redistribution mechanisms, from universal basic income to minimum wage requirements but, as the author points out, none is guaranteed to work well in a society where a large majority of people may become unable to find work. The largest and most important asymmetry that remains is, probably, the asymmetry that exists between developed countries and underdeveloped ones. Although this asymmetry was somewhat reduced by the recent economic development of the BRIC countries, Avent believes that was a one time event that will not reoccur.

Avent points out that the strength of the developed economies is not a direct consequence of the factors that are most commonly thought to be decisive: more capital, adequate infrastructures, and better education. These factors do indeed play a role but what makes the decisive difference is “social capital”, the set of rules shared by members of developed societies that makes them more effective at creating value for themselves and for society. Social capital, the unwritten set of rules that make it possible to create value, in a society, in a country or in a company, cannot be easily copied, sold, or exported.

This social capital (which, interestingly, closely matches the idea of shared beliefs Yuval Harari describes in Sapiens) can be assimilated, by immigrants or new hires, who can learn how to contribute to the creation of wealth, and benefit from it. However, as countries and societies became adverse at receiving immigrants, and companies reduce workforces, social capital becomes more and more concentrated.

In the end, Avent concludes that no public policies, no known economic theories, are guaranteed to fix the problem of inequality, mass unemployment, and lack of redistribution. It comes down to society, as whole, i.e., to each one of us, to decide to be generous and altruistic, in order to make sure that the wealth created by the hidden hand of the market benefits all of mankind.

A must-read if you care about the effects of asymmetries in income distribution on societies.

To Be a Machine: Adventures Among Cyborgs, Utopians, and the Futurists Solving the Modest Problem of Death

Mark O’Connell witty, insightful and sometimes deeply moving account of his research on the topic of transhumanism deserves a place in the bookshelf of anyone interested in the future of humanity. Reading To Be a Machine is a delightful trip through the ideals, technologies, places and characters involved in transhumanism, the idea that science and technology will one day transform human into immortal computer based lifeforms.

For reasons that are not totally clear to me, transhumanism remains mostly a fringe culture, limited to a few futurists, off-the-mainstream scientists and technology nuts. As shared fictions go (to use Yuval Harari’s notation), I would imagine transhumanism is one idea whose time has come. However, it remains mostly unknown by the general public. While humanists believe that the human person, with his/her desires, choices, and fears, should be the most important value to be preserved by a society (check my review of Homo Deus), transhumanists believe that biological based intelligence is imperfect, exists purely because of historical reasons (evolution, that is) and will go away soon as we move intelligence into other computational supports, more robust than our frail bodies.

O’Connell, himself a hard-core humanist, as becomes clear from reading between the lines of this book, pursued a deep, almost forensic, investigation on what transhumanists are up to. In this process, he talks with many unusual individuals involved in the transhumanist saga, from Max More, who runs Alcor, a company that, in exchange for a couple hundred dollars, will preserve your body for the future in liquid nitrogen (or 80k for just the head) to Aubrey de Grey, a reputed scientist working in life extension technologies, who argues that we should all be working on this problem. In de Grey’s words, cited by O’Connell “aging is a human disaster on an unimaginably vast scale, a massacre, a methodical and comprehensive annihilation of every single person that ever lived“. These are just two of the dozens of fascinating characters in the book interviewed in place by O’Connell.

The narrative is gripping, hilarious at times, but moving and compelling, not the least because O’Connell himself provides deep insights about the issues the book discusses. The characters in the book are, at once, alien and deeply human, as they are only trying to overcome the limits of our bodies. Deservedly, the book has been getting excellent reviews, from many sources.

In the end, one gets the idea that transhumanists are crazy, maybe, but not nearly as crazy as all other believers in immortality, be it by divine intervention, by reincarnation, or by any other mechanisms so ingrained in mainstream culture.

Homo Deus: A Brief History of Tomorrow

Homo Deus, the sequel to the wildly successful hit Sapiens, by Yuval Harari, aims to chronicle the history of tomorrow and to provide us with a unique and dispassionate view of the future of humanity. In Homo Deus, Harari develops further the strongest idea in Sapiens, the idea that religions (or shared fictions) are the reason why humanity came to dominate the world.

Many things are classified by Harari as religions, from the traditional ones like Christianism, Islamism or Hinduism, to other shared fictions that we tend not to view as religions, such as countries, money, capitalism, or humanism. The ability to share fictions, such as these, created in Homo sapiens the ability to coordinate enormous numbers of individuals in order to create vast common projects: cities, empires and, ultimately, modern technology. This is the idea, proposed in Sapiens, that Harari develops further in this book.

Harari thinks that, with the development of modern technology, humans will doggedly pursue an agenda consisting of three main goals: immortality, happiness and divinity. Humanity will try to become immortal, to live in constant happiness and to be god-like in its power to control nature.

The most interesting part of the book is in middle, where Harari analyses, in depth, the progressive but effective replacement of ancient religions by the dominant modern religion, humanism. Humanism, the relatively recent idea that there is a unique spark in humans, that makes human life sacred and every individual unique. Humanism therefore believes that meaning should be sought in the individual choices, views, and feelings, of humans, replaced almost completely traditional religions (some of them with millennia), which believed that meaning was to be found in ancient scriptures or “divine” sayings.

True, many people still believe in traditional religions, but with the exception of a few extremist sects and states, these religions plays a relatively minor role in conducting the business of modern societies. Traditional religions have almost nothing to say about the key ideas that are central to modern societies, the uniqueness of the individual and the importance of the freedom of choice, ideas that led to our current view of democracies and ever-growing market-oriented economies. Being religious, in the traditional sense, is viewed as a personal choice, a choice that must exist because of the essential humanist value of freedom of choice.

Harari’s description of the humanism schism, into the three flavors of liberal humanism, socialist humanism, and evolutionary humanism (Nazism and other similar systems), is interesting and entertaining. Liberal humanism, based on the ideals of free choice, capitalism, and democracy, has been gaining the upper hand in the twentieth century, with occasional relapses, over socialism or enlightened dictatorships.

The last part of the book, where one expects Harari to give us a hint of what may come after humanism, once technology creates systems and machines that make humanist creeds obsolete, is rather disappointing. Instead of presenting us with the promises and threats of transhumanism, he clings to common clichés and rather mundane worries.

Harari firmly believes that there are two types of intelligent systems: biological ones, which are conscious and have, possibly, some other special properties, and the artificial ones, created by technology, which are not conscious, even though they may come to outperform humans in almost every task. According to him, artificial systems may supersede humans in many jobs and activities, and possibly even replace humans as the intelligent species on Earth, but they will never have that unique spark of consciousness that we, humans, have.

This belief leads to two rather short-sighted final chapters, which are little more than a rant against the likes of Facebook, Google, and Amazon. Harari is (and justifiably so) particularly aghast with the new fad, so common these days, of believing that every single human experience should go online, to make shareable and give it meaning. The downsize is that this fad provides data to the all-powerful algorithms that are learning all there is to know about us. I agree with him that this is a worrying trend, but viewing it as the major threat of future technologies is a mistake. There are much much more important issues to deal with.

It is not that these chapters are pessimistic, even though they are. It is that, unlike in the rest of Homo Deus (and in Sapiens), in these last chapters Harari’s views seem to be locked inside a narrow and traditionalist view of intelligence, society, and, ultimately, humanity.

Other books, like SuperintelligenceWhat Technology Wants or The Digital Mind provide, in my opinion, much more interesting views on what a transhumanist society may come to be.

The Digital Mind: How Science is Redefining Humanity

Following the release in the US,  The Digital Mind, published by MIT Press,  is now available in Europe, at an Amazon store near you (and possibly in other bookstores). The book covers the evolution of technology, leading towards the expected emergence of digital minds.

Here is a short rundown of the book, kindly provided by yours truly, the author.

New technologies have been introduced in human lives at an ever increasing rate, since the first significant advances took place with the cognitive revolution, some 70.000 years ago. Although electronic computers are recent and have been around for only a few decades, they represent just the latest way to process information and create order out of chaos. Before computers, the job of processing information was done by living organisms, which are nothing more than complex information processing devices, created by billions of years of evolution.

Computers execute algorithms, sequences of small steps that, in the end, perform some desired computation, be it simple or complex. Algorithms are everywhere, and they became an integral part of our lives. Evolution is, in itself, a complex and long- running algorithm that created all species on Earth. The most advanced of these species, Homo sapiens, was endowed with a brain that is the most complex information processing device ever devised. Brains enable humans to process information in a way unparalleled by any other species, living or extinct, or by any machine. They provide humans with intelligence, consciousness and, some believe, even with a soul, a characteristic that makes humans different from all other animals and from any machine in existence.

But brains also enabled humans to develop science and technology to a point where it is possible to design computers with a power comparable to that of the human brain. Artificial intelligence will one day make it possible to create intelligent machines and computational biology will one day enable us to model, simulate and understand biological systems and even complete brains with unprecedented levels of detail. From these efforts, new minds will eventually emerge, minds that will emanate from the execution of programs running in powerful computers. These digital minds may one day rival our own, become our partners and replace humans in many tasks. They may usher in a technological singularity, a revolution in human society unlike any other that happened before. They may make humans obsolete and even a threatened species or they make us super-humans or demi-gods.

How will we create these digital minds? How will they change our daily lives? Will we recognize them as equals or will they forever be our slaves? Will we ever be able to simulate truly human-like minds in computers? Will humans transcend the frontiers of biology and become immortal? Will humans remain, forever, the only known intelligence in the universe?