LIFE 3.0: Being Human in the Age of Artificial Intelligence

Max Tegmark’s latest book, LIFE 3.0: Being Human in the Age of Artificial Intelligence, is an enthralling journey into the future, when the developments in artificial intelligence create a new type of lifeform on Earth.

Tegmark proposes to classify life in three stages. Life 1.0, unintelligent life, is able to change its hardware and improve itself only through the very slow and blind process of natural evolution. Single cell organisms, plants and simple animals are in this category. Life 2.0 is also unable to change its hardware (excepto through evolution, as for Life 1.0) but can change its software, stored in the brains, by using previous experience to learn new behaviors. Higher animals and humans, in particular, belong here. Humans can now, up to a limited point, change their hardware (through prosthetics, cellphones, computers and other devices) so they could also be considered now Life 2.1.

Life 3.0 is the new generation of life, which can change both its software and its hardware. The ability to change the computational support (i.e., the physical basis of computation) results from technological advances, which will only accelerate with the advent of Artificial General Intelligence (AGI). The book is really about the future of a world where AGI enables humanity to create a whole range of new technologies, and expand new forms of life through the cosmos.

The riveting prelude, The Tale of the Omega Team, is the story of the group of people who “created” the first intelligence explosion on planet Earth makes this a “hard-to-put-down” book.  The rest of the book goes through the consequences of this intelligence explosion, a phenomenon the author believes will undoubtedly take place, sooner or later. Chapter 4 focus on the explosion proper, and on how it could happen. Chapter 5, appropriately titled “Aftermath: The Next 10,000 Years” is one of the most interesting ones, and describes a number of long term scenarios that could result from such an event. These scenarios range from a benevolent and enlightened dictatorship (by the AI) to the enslaved God situation, where humanity keeps the AI in chains and uses it as a slave to develop new technologies, inaccessible to unaided humanity’s simpler minds. Always present, in these scenarios, are the risks of a hostile takeover by a human-created AGI, a theme that this book also addresses in depth, following on the ideas proposed by Nick Bostrom, in his book Superintelligence.

Being a cosmologist, Tegmark could not leave out the question of how life can spread through the Cosmos, a topic covered in depth in chapter 6, in a highly speculative fashion. Tegmark’s view is, to say the least, grandiose, envisaging a future where AGI will make it possible to spread life through the reachable universe, climbing the three levels of the Kardashev scale. The final chapters address (in a necessarily more superficial manner) the complex topics of goal setting for AI systems and artificial (or natural) consciousness. These topics somehow felt less well developed and more complete and convincing treatments can be found elsewhere. The book ends with a description of the mission of the Future of Life Institute, and the Asilomar AI Principles.

A book like this cannot leave anyone indifferent, and you will be likely to take one of two opposite sides: the optimistis, with many famous representatives, including Elon Mush, Stuart Russel and Nick Bostrom, who believe AGI can be developed and used to make humanity prosper; or the pessimists , whose more visible member is probably Yuval Noah Harari, who has voiced very serious concerns about technology developments in his book Homo Deus and in this review of Life 3.0.

Advertisements

Bell’s Theorem, or why the universe is even stranger than we might imagine

The Einstein-Podolsky-Rosen “paradox” was at first presented as an argument against some of the basic tenets of quantum mechanics.

One of these basic tenets is that there is genuine randomness in the characteristics of particles. For instance, when one measures the spin of an electron, it is only at the instant the measure is taken that the actual value of the spin is defined. Until then, its value was defined by a probability function, that collapses when the measurement is taken.

The EPR paradox uses the concept of entangled particles. Two particles are “entangled” if they were generated in such a way that they exhibit a totally correlated particular characteristic. For instance, two photons generated by a specific phenomenon (such as an electron-positron annihilation, under some circumstances) will have opposite polarizations. Once generated, these particles can travel vast distances, still entangled.

If some particular characteristic of one of these particles is measured (e.g., the polarization of a photon) in one location, this measurement will, probabilistically, result in a given value. That particular value will determine, instantaneously, the value of that same characteristic on the other particle, no matter how far the particles are. It is this “spooky action at a distance” that Einstein, Podolsky and Rosen believed to be impossible. It seems that the information about the state of one of the particles travels, faster than light, to the place where the other particle is.

Now, we can imagine that that particular characteristic of the particles was defined the very instant they were generated. Imagine you have one bag with one white ball and one black ball, and you separate the balls, without looking at them,  and put them into separate boxes. If one of the boxes is opened in Australia, say, and it is white, we will know instantaneously the color of the other ball. There is nothing magic or strange about this. Hidden inside the boxes, was all along the true color of the boxes, a hidden variable.

Maybe this is exactly what happens with the entangled photons. When they are generated, each one already carries with it the actual value of the polarization.

It is here that Bell’s Theorem comes to show that the universe is even stranger than we might conceive. Bell’s result, beautifully explained in this video, shows that the particles cannot carry with them any hidden variable that tells them what to do when they face a measurement. Each particle has to decide, probabilistically, at the time of the measurement, the value that should be reported. And, once this decision is made, the measurement for the other entangled particle is also defined, even if the other particle is on the other side of the universe. It seems that information travels faster than light.

The fact is that hidden variables cannot be used to explain this phenomenon. As Bell concluded “In a theory in which parameters are added to quantum mechanics to determine the results of individual measurements, without changing the statistical predictions, there must be a mechanism whereby the setting of one measuring device can influence the reading of another instrument, however remote. Moreover, the signal involved must propagate instantaneously, …

A very easy and practical demonstration of Bell’s theorem can be done with polarized filters, like the ones used in cameras or some 3D glasses. If you take two filters and put them at an angle, only a fraction of the photons that go through the first one make it through the second one. The actual fraction is given by the cosine squared of the angle between the filters(so, if the angle is 90º, no photons go through the two filters). So far, so good. Now, if you have the two filters at an angle (say 45º, so that half the photons that pass the first go through the second filter) and put an additional filter between them, at an angle of 22.5º, it happens that roughly 85% of the photons go through the (now) second filter. Of these, roughly 85% go through the third filter (which used to be the second). That means that, with the three filters in place, roughly 72% of the photons go through, way more than if you had just the two first filters, which were not changed in any way. This, obviously, cannot happen if the decision of the photons was determined from the start.

Do look at the video, and do the experience yourself.