LIFE 3.0: Being Human in the Age of Artificial Intelligence

Max Tegmark’s latest book, LIFE 3.0: Being Human in the Age of Artificial Intelligence, is an enthralling journey into the future, when the developments in artificial intelligence create a new type of lifeform on Earth.

Tegmark proposes to classify life in three stages. Life 1.0, unintelligent life, is able to change its hardware and improve itself only through the very slow and blind process of natural evolution. Single cell organisms, plants and simple animals are in this category. Life 2.0 is also unable to change its hardware (excepto through evolution, as for Life 1.0) but can change its software, stored in the brains, by using previous experience to learn new behaviors. Higher animals and humans, in particular, belong here. Humans can now, up to a limited point, change their hardware (through prosthetics, cellphones, computers and other devices) so they could also be considered now Life 2.1.

Life 3.0 is the new generation of life, which can change both its software and its hardware. The ability to change the computational support (i.e., the physical basis of computation) results from technological advances, which will only accelerate with the advent of Artificial General Intelligence (AGI). The book is really about the future of a world where AGI enables humanity to create a whole range of new technologies, and expand new forms of life through the cosmos.

The riveting prelude, The Tale of the Omega Team, is the story of the group of people who “created” the first intelligence explosion on planet Earth makes this a “hard-to-put-down” book.  The rest of the book goes through the consequences of this intelligence explosion, a phenomenon the author believes will undoubtedly take place, sooner or later. Chapter 4 focus on the explosion proper, and on how it could happen. Chapter 5, appropriately titled “Aftermath: The Next 10,000 Years” is one of the most interesting ones, and describes a number of long term scenarios that could result from such an event. These scenarios range from a benevolent and enlightened dictatorship (by the AI) to the enslaved God situation, where humanity keeps the AI in chains and uses it as a slave to develop new technologies, inaccessible to unaided humanity’s simpler minds. Always present, in these scenarios, are the risks of a hostile takeover by a human-created AGI, a theme that this book also addresses in depth, following on the ideas proposed by Nick Bostrom, in his book Superintelligence.

Being a cosmologist, Tegmark could not leave out the question of how life can spread through the Cosmos, a topic covered in depth in chapter 6, in a highly speculative fashion. Tegmark’s view is, to say the least, grandiose, envisaging a future where AGI will make it possible to spread life through the reachable universe, climbing the three levels of the Kardashev scale. The final chapters address (in a necessarily more superficial manner) the complex topics of goal setting for AI systems and artificial (or natural) consciousness. These topics somehow felt less well developed and more complete and convincing treatments can be found elsewhere. The book ends with a description of the mission of the Future of Life Institute, and the Asilomar AI Principles.

A book like this cannot leave anyone indifferent, and you will be likely to take one of two opposite sides: the optimistis, with many famous representatives, including Elon Mush, Stuart Russel and Nick Bostrom, who believe AGI can be developed and used to make humanity prosper; or the pessimists , whose more visible member is probably Yuval Noah Harari, who has voiced very serious concerns about technology developments in his book Homo Deus and in this review of Life 3.0.

Advertisements

Consciousness: Confessions of a Romantic Reductionist

Christoph Koch, the author of “Consciousness: Confessions of a Romantic Reductionist”  is not only a renowned researcher in brain science but also the president of the Allen Institute for Brain Science, one of the foremost institutions in brain research. What he has to tell us about consciousness, and how he believes it is produced by the brain is certainly of great interest for anyone interested in these topics.

However, the book is more that just another philosophical treatise on the issue of consciousness, as it is also a bit of an autobiography and an open window on Koch’s own consciousness.

With less than 200 pages (in the paperback edition), this book is indeed a good start for those interested in the centuries-old problem of the mind-body duality and how a physical object (the brain) creates such an ethereal thing as a mind. He describes and addresses clearly the central issue of why there is such a thing as consciousness in humans, and how it creates self-awareness, free-will (maybe) and the qualia that characterize the subjective experiences each and (almost) every human has.

In Koch’s view, consciousness is not a thing that can be either on or off. He ascribes different levels of consciousness to animals and even to less complex creatures and systems. Consciousness, he argues, is created by the fact that very complex systems have a high dimensional state space, creating a subjective experience that corresponds to each configuration of this state space. In this view, computers and other complex systems can also exhibit some degree of consciousness, although much smaller than living entities, since they are much less complex.

He goes on to describe several approaches that have aimed at elucidating the complex feedback loops existing in brains, which have to exist in order to create these complex state spaces. Modern experimental techniques can analyze the differences between awake (conscious) and asleep (unconscious) brains, and learn from these differentes what exactly does create consciousness in a brain.

Parts of the book are more autobiographical, however. He describes not only his life-long efforts to address these questions, many of them developed together with Francis Crick, who remains a reference to him, as a scientist and as a person. The final chapter is more philosophical, and addresses other questions for which we have no answer yet, and may never have, such as “Why there is something instead of nothing?” or “Did an all powerful God create the universe, 14 billions year ago, complete with the laws of physics, matter and energy, or is this God simply a creation of man?”.

All in all, excellent reading, accessible to anyone interested in the topic but still deep and scientifically exact.

Portuguese Edition of The Digital Mind

IST Press, the publisher of Instituto Superior Técnico, just published the Portuguese edition of The Digital Mind, originally published by MIT Press.

The Portuguese edition, translated by Jorge Pereirinha Pires, follow the same organization and has been reviewed by a number of sources. The back-cover reviews are by Pedro Domingos, Srinivas Devadas, Pedro Guedes de Oliveira and Francisco Veloso.

A pre-publication was made by the Público newspaper, under the title Até que mundos digitais nos levará o efeito da Rainha Vermelha, making the first chapter of the book publicly available.

There are also some publicly available reviews and pieces about this edition, including an episode of a podcast and a review in the radio.

The last invention of humanity

Irving John Good was a British mathematician who worked with Alan Turing in the famous Hut 8 of Bletchley Park, contributing to the war effort by decrypting the messages coded by the German enigma machines. After that, he became a professor at Virginia Tech and, later in life, he was a consultant for the cult movie 2001: A Space Odyssey, by Stanley Kubrick.

Irving John Good (born Isadore Jacob Gudak to a Polish jewish family) is credited with coining the term intelligence explosion, to refer to the possibility that a super-intelligent system may, one day, be able to design an even more intelligent successor. In his own words:

Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an ‘intelligence explosion,’ and the intelligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever make, provided that the machine is docile enough to tell us how to keep it under control.

We are still very far from being able to design an artificially intelligent (AI)  system that is smart enough to design and code even better AI systems. Our current efforts address very narrow fields, and obtain systems that do not have the general intelligence required to create the phenomenon I. J. Good was referring to. However, in some very restrict domains, we can see at work mechanisms that resemble the that very same phenomenon.

Go is a board game, very difficult to master because of the huge number of possible games and high number of possible moves at each position. Given the complexity of the game, branch and bound approaches could not be used, until recently, to derive good playing strategies. Until only a few years ago, it was believed that it would take decades to create a program that would master the game of Go, at a level comparable with the best human players.

In January 2016, DeepMind, an AI startup (which was at that time acquired by Google by a sum reported to exceed 500M dollars), reported in an article in Nature that they had managed to master the complex game of Go by using deep neural networks and a tree search engine. The system, called AlphaGo, was trained on databases of human games and eventually managed to soundly beat the best human players, becoming the best player in the world, as reported in this blog.

A couple of weeks ago, in October of 2017, DeepMind reported, in a second article in Nature, that they programmed a system, which became even more proficient at the game, that mastered the game without using any human knowledge. AlphaGo Zero did not use any human games to acquire knowledge about the game. Instead, it played millions of games (close to 30 millions, in fact, played over a period of 40 days) against another version of itself, eventually acquiring knowledge about tactics and strategies that have been slowly created by the human race for more than two millennia. By simply playing against itself, the system went from a child level (random moves) to a novice level to a world champion level. AlphaGo Zero steamrolled the original AlphaGo by 100 to 0,  showing that it is possible to obtain super-human strength without using any human generated knowledge.

In a way, the computer improved itself, by simply playing against itself until it reached perfection. Irving John Good, who died in 2009, would have liked to see this invention of mankind. Which will not be the last, yet…

Picture credits: Go board, picture taken by Hoge Rielen, available at Wikimedia Commons.

 

AIs running wild at Facebook? Not yet, not even close!

Much was written about two Artificial Intelligence systems developing their own language. Headlines like “Facebook shuts down down AI after it invents its own creepy language” and “Facebook engineers panic, pull plug on AI after bots develop their own language” were all over the place, seeming to imply that we were just at the verge of a significant incident in AI research.

As it happens, nothing significant really happened, and these headlines are only due to the inordinate appetite of the media for catastrophic news. Most AI systems currently under development have narrow application domains, and do not have the capabilities to develop their own general strategies, languages, or motivations.

To be fair, many AI systems do develop their own language. Whenever a neural network is trained to perform pattern recognition, for instance, a specific internal representation is chosen by the network to internally encode specific features of the pattern under analysis. When everything goes smoothly, these internal representations correspond to important concepts in the patterns under analysis (a wheel of car, say, or an eye) and are combined by the neural network to provide the output of interest. In fact, creating these internal representations, which, in a way, correspond to concepts in a language, is exactly one of the most interesting features of neural networks, and of deep neural networks, in particular.

Therefore, systems creating their own languages are nothing new, really. What happened with the Facebook agents that made the news was that two systems were being trained using a specific algorithm, a generative adversarial network. When this training method is used, two systems are trained against each other. The idea is that system A tries to make the task of system B more difficult and vice-versa. In this way, both systems evolve towards becoming better at their respective tasks, whatever they are. As this post clearly describes, the two systems were being trained at a specific negotiation task, and they communicated using English words. As the systems evolved, the systems started to use non-conventional combinations of words to exchange their information, leading to the seemingly strange language exchanges that led to the scary headlines, such as this one:

Bob: I can i i everything else

Alice: balls have zero to me to me to me to me to me to me to me to me to

Bob: you i everything else

Alice: balls have a ball to me to me to me to me to me to me to me to me

Strange as this exchange may look, nothing out of the ordinary was really happening. The neural network training algorithms were simply finding concept representations which were used by the agents to communicate their intentions in this specific negotiation task (which involved exchanging balls and other items).

The experience was stopped not because Facebook was afraid that some runaway explosive intelligence process was underway, but because the objective was to have the agents use plain English, and not a made up language.

Image: Picture taken at the Institute for Systems and Robotics of Técnico Lisboa, courtesy of IST.

Stuart Russell and Sam Harris on The Dawn of Artificial Intelligence

In one of the latest episodes of his interesting podcast, Waking Up , Sam Harris discusses with Stuart Russell the future of Artificial Intelligence (AI).

Stuart Russel is one of the foremost world authorities on AI, and author of the most widely used textbook on the subject, Artificial Intelligence, a Modern Approach. Interestingly, most of the (very interesting) conversation focuses not so much on the potential of AI, but on the potential dangers of the technology.

Many AI researchers have dismissed offhand the worries many people have expressed over the possibility of runaway Artificial Intelligence. In fact, most active researchers know very well that most of the time is spent worrying about the convergence of algorithms, the lack of efficiency of training methods, or in difficult searches for the right architecture for some narrow problem. AI researchers spend no time at all worrying about the possibility that the systems they are developing will, suddenly, become too intelligent and a danger to humanity.

On the other hand, famous philosophers, scientists and entrepreneurs, such as Elon Musk, Richard Dawkins, Bill Gates, and Nick Bostrom have been very vocal about the possibility that man-made AI systems may one day run amok and become a danger to humanity.

From this duality one is led to believe that only people who are away from the field really worry about the possibility of dangerous super-intelligences. People inside the field pay little or no attention to that possibility and, in many cases, consider these worries baseless and misinformed.

That is why this podcast, with the participation of Stuart Russell, is interesting and well worth hearing. Russell cannot be accused of being an outsider to the field of AI, and yet his latest interests are focused on the problem of making sure that future AIs will have their objectives closely allied with those of the human race.

To Be a Machine: Adventures Among Cyborgs, Utopians, and the Futurists Solving the Modest Problem of Death

Mark O’Connell witty, insightful and sometimes deeply moving account of his research on the topic of transhumanism deserves a place in the bookshelf of anyone interested in the future of humanity. Reading To Be a Machine is a delightful trip through the ideals, technologies, places and characters involved in transhumanism, the idea that science and technology will one day transform human into immortal computer based lifeforms.

For reasons that are not totally clear to me, transhumanism remains mostly a fringe culture, limited to a few futurists, off-the-mainstream scientists and technology nuts. As shared fictions go (to use Yuval Harari’s notation), I would imagine transhumanism is one idea whose time has come. However, it remains mostly unknown by the general public. While humanists believe that the human person, with his/her desires, choices, and fears, should be the most important value to be preserved by a society (check my review of Homo Deus), transhumanists believe that biological based intelligence is imperfect, exists purely because of historical reasons (evolution, that is) and will go away soon as we move intelligence into other computational supports, more robust than our frail bodies.

O’Connell, himself a hard-core humanist, as becomes clear from reading between the lines of this book, pursued a deep, almost forensic, investigation on what transhumanists are up to. In this process, he talks with many unusual individuals involved in the transhumanist saga, from Max More, who runs Alcor, a company that, in exchange for a couple hundred dollars, will preserve your body for the future in liquid nitrogen (or 80k for just the head) to Aubrey de Grey, a reputed scientist working in life extension technologies, who argues that we should all be working on this problem. In de Grey’s words, cited by O’Connell “aging is a human disaster on an unimaginably vast scale, a massacre, a methodical and comprehensive annihilation of every single person that ever lived“. These are just two of the dozens of fascinating characters in the book interviewed in place by O’Connell.

The narrative is gripping, hilarious at times, but moving and compelling, not the least because O’Connell himself provides deep insights about the issues the book discusses. The characters in the book are, at once, alien and deeply human, as they are only trying to overcome the limits of our bodies. Deservedly, the book has been getting excellent reviews, from many sources.

In the end, one gets the idea that transhumanists are crazy, maybe, but not nearly as crazy as all other believers in immortality, be it by divine intervention, by reincarnation, or by any other mechanisms so ingrained in mainstream culture.