Possible minds

John Brockman’s project of bringing together 25 pioneers in Artificial Intelligence to discuss the promises and perils of the field makes for some interesting reading. This collection of short essays lets you peer inside the minds of such luminaries as Judea Pearl, Stuart Russell, Daniel Dennett, Frank Wilczek, Max Tegmark, Steven Pinter or David Deutsch, to name only a few. The fact that each one of them contributed with an essay that is only a dozen pages long does not hinder the transmission of the messages and ideas they support. On the contrary, it is nice to read about Pearl’s ideas about causality or Tegmark’s thoughts on the future of intelligence in a short essay. Although the essays do not replace longer and more elaborate texts, they certainly give the reader the gist of the central arguments that, in many cases, made the authors well-known. Although the organization of the essay varies from author to author, all contributions are relevant and entertaining, whether they come from lesser-known artists or from famous scientists such as George Church, Seth Loyd, or Rodney Brooks.

The texts in this book did not appear out of thin air. In fact, the invited contributors were given the same starting point: Norbert Wiener’s influential book “The Human Use of Human Beings”, a prescient text authored more than 70 years ago by one of the most influential researchers in the field that, ultimately, originally coined as cybernetics ultimately led to digital computers and Artificial Intelligence. First published in 1950, Wiener’s book serves as the starting point for 25 interesting takes on the future of computation, artificial intelligence, and humanity. Whether you believe that the future of humanity will be digital or are concerned that we are losing our humanity, there will be something in this book for you.

Machines like me

Ian McEwan´s latest novel, Machines like me does not disappoint if you are looking for a well-written and accurate work of fiction about Artificial Intelligence. The novel takes place in a slightly parallel universe, where Alan Turing did not kill himself and, instead, continued to make important contributions to computer science and to Artificial Intelligence throughout his life. In this world, similar to ours but different in some important respects, AI has evolved much faster and, in the 80s, it became possible to acquire, by a reasonable amount, humanoid robots that could be used as servants, friends or companions.

And, indeed, Adam, the robot, is all of these. From the three characters in the novel (the other two are Charlie and Miranda and yes, there is a sort of love triangle involved) Adam has, no doubt, the more fascinating personality. Without giving away too much, Adam, who starts as something like a sophisticated new laptop, which a 470-page “user manual”, becomes the hero of the story, raising in the mind of the reader many questions about machine intelligence, consciousness, and the rights of intelligent machines. His takes on the events that unfold are sometimes brilliant (e.g., “those who believe in the afterlife will never be disappointed“), other times unexpected,  but never off the mark.

Artificially intelligent or not, Adam is by far the most fascinating character of the lot, and we find ourselves empathizing with him (or it?), in a way that you may not expect

In the process of telling the story, Ian McEwan creates an alternative version of the history of computer science and Artificial Intelligence, which is accurate, thought-provoking, and, ultimately, quite plausible. I strongly recommend this book as an inspiring reading for the summer!

The Fabric of Reality

The Fabric of Reality, a 1997 book by David Deutsch, is full of great ideas, most of them surprising and intriguing. The main argument is that explanations are the centerpiece of science and that four theories play an essential role in our understanding of the world: quantum theory, the theory of evolution, the theory of computation and epistemology (the theory of knowledge).

You may raise a number of questions about these particular choices, such as why is the theory of relativity not there or why is the theory of evolution simply not a result of other theories in physics or even what makes epistemology to special. You will have to read the book to find out but the short answer is that not everything is physics and that theories at many levels are required to explain the world. Still, in physics, the most fundamental idea is quantum theory and it has profound impacts on our understanding of the universe. Perhaps the most significant impact comes from the fact that (according to Deutsch) what we know about quantum theory implies that we live in a multiverse. Each time a quantum phenomenon can conduct to more than one observable result, the universe splits into as many universes as the number of possible results, universes that exist simultaneously in the multiverse.

Although the scientific establishment views the multiverse theory with reservation, to say the least, to Deutsch, the multiverse is not just a theory, but the only possible explanation for what we know about quantum physics (he dismisses the Copenhagen interpretation as nonsense). Armed with these four theories, and the resulting conclusion that we live in a multiverse, Deutsch goes on to address thought-provoking questions, such as:

  • Is life a small thing at the scale of the universe or, on the contrary, is the most important thing on it?
  • Can we have free will, in a deterministic universe? And in the multiverse?
  • Do computers strictly more powerful than Turing machines exist, and how do they work?
  • Can mathematical proofs provide us with absolute certainties about specific mathematical statements?
  • Is time travel possible, at least in principle, either in the physical world or in a virtual reality simulator?
  • Will we (or our descendants, or some other species) eventually become gods, when we reach the Omega point?

The idea of the multiverse is required to answer most, if not all, of these questions. Deutsch is certainly not a parsimonious person when he uses universes to answer questions and to solve problems. The multiverse allows you to have free will, solves the paradoxes of time travel and makes quantum computers possible, among many other things. One example of the generous use of universes made by Deutsch is the following sentence:

When a quantum factorization engine is factorizing a 250-digit number, the number of interfering universes will be of the order of 10 to the 500. This staggeringly large number is the reason why Shor’s algorithm makes factorization tractable. I said that the algorithm requires only a few thousand arithmetic operations. I meant, of course, a few thousand operations in each universe that contributes to the answer. All those computations are performed in parallel, in different universes, and share their results through interference.

The fact that Deutsch’s arguments depend so heavily on the multiverse idea makes this book much more about the multiverse than about the other topics he addresses. After all, if the multiverse theory is wrong, many of Deutsch’s explanations collapse, interesting as they may be.

Still, the book is full of great ideas, makes for some interesting reading, and presents many interesting concepts, some of them further developed in other books by Deutsch, such as The Beginning of Infinity.

Virtually Human: the promise of digital immortality

Martine Rothblatt’s latest book, Virtually Human, the promise – and the peril – of digital immortality, recommended by none less than the likes of Craig Venter and Ray Kurzweil, is based on an interesting premise, which looks quite reasonable in principle.

Each one of us leaves behind such a large digital trace that it could be used, at least in principle, to teach a machine to behave like the person that generated the trace. In fact, if you put together all the pictures, videos, emails and messages that you generate in a lifetime, together with additional information like GPS coordinates, phone conversations, and social network info, there should be enough information for the right software to learn to behave just like you.

Rothblatt imagines that all this information will be stored in what she calls a mindfile and that such a mindfile could be used by software (mindware) to create mindclones, software systems that would think, behave and act like the original human that was used to create the mindfile. Other systems, similar to these, but not based on a copy of a human original, are called bemans, and raise similar questions. Would such systems have rights and responsibilities, just like humans? Rothblatt argues forcefully that society will have to recognize them as persons, sooner or later. Otherwise, we would assist to a return to situations that modern societies have already abandoned, like slavery, and other practices that disrespect basic human rights (in this case, mindclone and beman’s rights).

Most of the book is dedicated to the analysis of the social, ethical, and economic consequences of an environment where humans live with mindclones and bemans. This analysis is entertaining and comprehensive, ranging from subjects as diverse as the economy, human relations, families, psychology, and even religion.  If one assumes the technology to create mindclones will happen, thinking about the consequences of such a technology is interesting and entertaining.

However, the book falls short in that it does not provide any convincing evidence that the technology will come to exist, in any form similar to the one that is assumed so easily by the author. We do not know how to create mindware that could interpret a mindfile and use it to create a conscious, sentient, self-aware system that is indistinguishable, in its behavior, from the original. Nor are we likely to find out soon how such a mindware could be designed. And yet, Rothblatt seems to think that such a technology is just around the corner, maybe just a few decades away. All in all, it sounds more like (poor) science fiction than the shape of things to come.

The Beginning of Infinity

David Deutsch‘s newest book, The Beginning of Infinity is a tour de force argument for the power of science to transform the world. Deutsch’s main point is that human intelligence, once it reached the point where it started to be used to construct predictive explanations about the behavior of nature, became universal. Here, “universal” means that is can be used to understand any phenomenon and that this understanding leads to the creation of new technologies, which will be used to spread human intelligence throughout the known universe.

The Beginning of Infinity is not just one more book about science and how science is transforming our world. It is an all-encompassing analysis of the way human intelligence and human societies can develop or stagnate, by adopting or refusing to adopt the stance of looking for understandable explanations. Deutsch calls “static” those societies that refuse to look for new, non-supernatural explanations and “dynamic” those that are constantly looking for new explanations, based on objective and checkable evidence. Dynamic societies, he argues, develop and propagate rational memes, while static societies hold on to non-rational memes.

In the process, Deutsch talks authoritatively about evolution, the universality of computation, quantum mechanics, the multiverse and the paradoxes of infinity. They are not disparate subjects since they all become part of one single story on how humanity managed to understand and control the physical world.

Deutsch is at his best when arguing that science and technology are not only positive forces but that they are the only way to ensure the survival of Humanity in the long run. He argues, convincingly, against the myth of Gaia, the idea that the planet is a living being providing us with a generous and forgiving environment as well as against the related, almost universal, concern that technological developments are destroying the planet. This is nonsense, he argues. The future survival of Humanity and the hope of spreading human intelligence throughout the Cosmos reside entirely in our ability to control nature and to bend it to our will. Otherwise, we will follow the path of the many species that became extinct, for not being able to control the natural or unnatural phenomena that led to their extinction.

Definitely, the book to read if you care about the Future of Humanity.

 

Crystal Nights

Exactly 80 years ago, Kristallnacht (the night of the crystals) took place in Germany, in the night from the 9th to the 10th of November. Jews were persecuted and killed, and their property was destroyed, in an event that is an important marker in the rise of the anti-semitism movement that characterized Nazi Germany. The name comes from the many windows of Jewish-owned stores broken during that night.

Greg Egan, one of my favorite science fiction writers, wrote a short story inspired in that same night, entitled Crystal Nights. This (very) short story is publicly available (you can find it here ) and is definitely worth reading. I will not spoil the ending here, but it has to do with computers and singularities. The story was also included in a book that features other short stories by Greg Egan.

If you like this story, maybe you should check other books by Egan, such as Permutation City, Diaspora or Axiomatic (another collection of short stories).

LIFE 3.0: Being Human in the Age of Artificial Intelligence

Max Tegmark’s latest book, LIFE 3.0: Being Human in the Age of Artificial Intelligence, is an enthralling journey into the future, when the developments in artificial intelligence create a new type of lifeform on Earth.

Tegmark proposes to classify life in three stages. Life 1.0, unintelligent life, is able to change its hardware and improve itself only through the very slow and blind process of natural evolution. Single cell organisms, plants and simple animals are in this category. Life 2.0 is also unable to change its hardware (excepto through evolution, as for Life 1.0) but can change its software, stored in the brains, by using previous experience to learn new behaviors. Higher animals and humans, in particular, belong here. Humans can now, up to a limited point, change their hardware (through prosthetics, cellphones, computers and other devices) so they could also be considered now Life 2.1.

Life 3.0 is the new generation of life, which can change both its software and its hardware. The ability to change the computational support (i.e., the physical basis of computation) results from technological advances, which will only accelerate with the advent of Artificial General Intelligence (AGI). The book is really about the future of a world where AGI enables humanity to create a whole range of new technologies, and expand new forms of life through the cosmos.

The riveting prelude, The Tale of the Omega Team, is the story of the group of people who “created” the first intelligence explosion on planet Earth makes this a “hard-to-put-down” book.  The rest of the book goes through the consequences of this intelligence explosion, a phenomenon the author believes will undoubtedly take place, sooner or later. Chapter 4 focus on the explosion proper, and on how it could happen. Chapter 5, appropriately titled “Aftermath: The Next 10,000 Years” is one of the most interesting ones, and describes a number of long term scenarios that could result from such an event. These scenarios range from a benevolent and enlightened dictatorship (by the AI) to the enslaved God situation, where humanity keeps the AI in chains and uses it as a slave to develop new technologies, inaccessible to unaided humanity’s simpler minds. Always present, in these scenarios, are the risks of a hostile takeover by a human-created AGI, a theme that this book also addresses in depth, following on the ideas proposed by Nick Bostrom, in his book Superintelligence.

Being a cosmologist, Tegmark could not leave out the question of how life can spread through the Cosmos, a topic covered in depth in chapter 6, in a highly speculative fashion. Tegmark’s view is, to say the least, grandiose, envisaging a future where AGI will make it possible to spread life through the reachable universe, climbing the three levels of the Kardashev scale. The final chapters address (in a necessarily more superficial manner) the complex topics of goal setting for AI systems and artificial (or natural) consciousness. These topics somehow felt less well developed and more complete and convincing treatments can be found elsewhere. The book ends with a description of the mission of the Future of Life Institute, and the Asilomar AI Principles.

A book like this cannot leave anyone indifferent, and you will be likely to take one of two opposite sides: the optimistis, with many famous representatives, including Elon Mush, Stuart Russel and Nick Bostrom, who believe AGI can be developed and used to make humanity prosper; or the pessimists , whose more visible member is probably Yuval Noah Harari, who has voiced very serious concerns about technology developments in his book Homo Deus and in this review of Life 3.0.

Portuguese Edition of The Digital Mind

IST Press, the publisher of Instituto Superior Técnico, just published the Portuguese edition of The Digital Mind, originally published by MIT Press.

The Portuguese edition, translated by Jorge Pereirinha Pires, follow the same organization and has been reviewed by a number of sources. The back-cover reviews are by Pedro Domingos, Srinivas Devadas, Pedro Guedes de Oliveira and Francisco Veloso.

A pre-publication was made by the Público newspaper, under the title Até que mundos digitais nos levará o efeito da Rainha Vermelha, making the first chapter of the book publicly available.

There are also some publicly available reviews and pieces about this edition, including an episode of a podcast and a review in the radio.

Stuart Russell and Sam Harris on The Dawn of Artificial Intelligence

In one of the latest episodes of his interesting podcast, Waking Up , Sam Harris discusses with Stuart Russell the future of Artificial Intelligence (AI).

Stuart Russel is one of the foremost world authorities on AI, and author of the most widely used textbook on the subject, Artificial Intelligence, a Modern Approach. Interestingly, most of the (very interesting) conversation focuses not so much on the potential of AI, but on the potential dangers of the technology.

Many AI researchers have dismissed offhand the worries many people have expressed over the possibility of runaway Artificial Intelligence. In fact, most active researchers know very well that most of the time is spent worrying about the convergence of algorithms, the lack of efficiency of training methods, or in difficult searches for the right architecture for some narrow problem. AI researchers spend no time at all worrying about the possibility that the systems they are developing will, suddenly, become too intelligent and a danger to humanity.

On the other hand, famous philosophers, scientists and entrepreneurs, such as Elon Musk, Richard Dawkins, Bill Gates, and Nick Bostrom have been very vocal about the possibility that man-made AI systems may one day run amok and become a danger to humanity.

From this duality one is led to believe that only people who are away from the field really worry about the possibility of dangerous super-intelligences. People inside the field pay little or no attention to that possibility and, in many cases, consider these worries baseless and misinformed.

That is why this podcast, with the participation of Stuart Russell, is interesting and well worth hearing. Russell cannot be accused of being an outsider to the field of AI, and yet his latest interests are focused on the problem of making sure that future AIs will have their objectives closely allied with those of the human race.

The Great Filter: are we rare, are we first, or are we doomed?

Fermi’s Paradox (the fact that we never detected any sign of aliens even though, conceptually, life could be relatively common in the universe) has already been discussed in this blog, as new results come in about the rarity of life bearing planets, the discovery of new Earth-like planets, or even the detection of possible signs of aliens.

There are a number of possible explanations for Fermi’s Paradox and one of them is exactly that sufficiently advanced civilizations could retreat into their own planets, or star systems, exploring the vastness of the nano-world, becoming digital minds.

A very interesting concept related with Fermi’s Paradox is the Great Filter theory, which states, basically, that if intelligent civilizations do not exist in the galaxy we, as a civilization, are either rare, first, or doomed. As this post very clearly describes, one of these three explanations has to be true, if no other civilizations exist.

The Great Filter theory is based on Robin Hanson’s argument that the failure to find any extraterrestrial civilizations in the observable universe has to be explained by the fact that somewhere, in the sequence of steps that leads from planet formation to the creation of technological civilizations, there has to be an extremely unlikely event, which he called the Great Filter.

This Great Filter may be behind us, in the process that led from inorganic compounds to humans. That means that we, intelligent beings, are rare in the universe. Maybe the conditions that lead to life are extremely rare, either due to the instability of planetary systems, or to the low probability that life gets started in the first place, or to some other phenomenon that we were lucky enough to overcome.

It can also happen that conditions that make possible the existence of life are relatively recent in the universe. That would mean that conditions for life only became common in the universe (or the galaxy) in the last few billions years. In that case, we may not be rare, but we would be the first, or among the first, planets to develop intelligent life.

The final explanation is that the Great Filter is not behind us, but ahead of us. That would mean that many technological civilizations develop but, in the end, they all collapse, due to unknown factors (some of them we can guess). In this case, we are doomed, like all other civilizations that, presumably, existed.

There is, of course, another group of explanations, which states that advanced civilizations do exist in the galaxy, but we are simply too dumb to contact or to observe them. Actually, many people believe that we should not even be trying to contact them, by broadcasting radio-signals into space, advertising that we are here. It may, simply, be too dangerous.

 

Image by the Bureau of Land Management, available at Wikimedia Commons