How to create a mind

Ray Kurzweil’s latest book, How to Create a Mind, published in 2012, is an interesting read and shows some welcome change on his views of science and technology. Unlike some of his previous (and influntial) books, including The Singularity is Near, The Age of Spiritual Machines and The Age of Intelligent Machines, the main point of this book is not that exponential technological development will bring in a technological singularity in a few decades.

how-to-create-a-mind-cover-347x512

True, that theme is still present, but takes second place to the main theme of the book, a concrete (although incomplete) proposal to build intelligent systems that are inspired in the architecture of the human neocortex.

Kurzweil main point in this book is to present a model of the human neocortex, what he calls The Pattern Recognition Theory of the Mind (PRTM). In this theory, the neocortex is simply a very powerful pattern recognition system, built out of about 300 million (his number, not mine) similar pattern recognizers. The input from each of these recognizers can come from either external inputs, through the senses, or from the older parts (evolutionary speaking) of the brain, or from the output of other pattern recognizers in the neocortex. Each recognizer is relatively simple, and can only recognize a simple pattern (say the word APPLE) but, through complex interconnections with other recognizers above and below, it makes possible all sorts of thinking and abstract reasoning.

Each pattern consists, in its essence, in a short sequence of symbols, and is connected, through bundles of axons, to the actual place in the cortex where these symbols are activated, by another pattern recognizer. In most cases, the memories these recognizers represent must be accessed in a specific order. He gives the example that very few persons can recite the alphabet backwards, or even their social security number, which is taken as evidence of the sequential nature of operation of these pattern recognizers.

The key point of the book is that the actual algorithms used to build and structure a neocortex may soon become well understood, and used to build intelligent machines, embodied with true strong Artificial Intelligence. How to Create a Mind falls somewhat short of the promise in the subtitle, The Secret of Human Thought Revealed, but still makes for some interesting reading.

Black Mirror, a glimpse of the (near) future

 

If you didn’t yet watch any episodes of Black Mirror, a British series created by Charlie Brooker, go and fix that now. The 12 episodes of Black Mirror have been rated by The Wrap from “Good” to “Mind Blowing”, and they all cover the anticipated and non-anticipated consequences of new technologies.

According to the series creator, “each episode has a different cast, a different setting, even a different reality. But they’re all about the way we live now – and the way we might be living in 10 minutes’ time if we’re clumsy.” 

The series analyses, sometimes in excruciating ways, how new technologies, such as social networks, virtual reality, genetic engineering, and artificial intelligence, can lead to unexpected, if plausible, lifestyles, problems and challenges.

Computers will always follow instructions. That may be the problem…

Many pessimistic scenarios about machines taking control of the world and harming humans are based on the idea that computers will eventually develop self-consciousness and define their own goals, incompatible with the goals of humanity. This is the basis of the argument of many science-fiction movies and books.

Many people believe, however, that this will not be the main problem. As reported in many news outlets, the University of California at Berkeley (my alma matter) has launched the Center for Human-Compatible Artificial Intelligence. The center will be headed by Stuart Russell, a famous expert in Artificial Intelligence (and  co-author, with Peter Norvig, of the most used textbook in the field, Artificial Intelligence: A Modern Approach). Russell has been a vocal advocate for incorporating human values into the design of AI, in order to avoid the pitfall that may come from AI systems running amok.

According to Stuart Russell, the issue is “that machines as we currently design them in fields like AI, robotics, control theory and operations research take the objectives that we humans give them very literally“. Therefore, they may approach tasks with an objective that is simply too literal. For instance, if instructed to solve the problem of “global warming”, a machine may decide that the most effective way is to wipe out the human race.

robotknot750-410x273

According to the UC Berkeley press release, the center is being launched with a grant of $5.5 million from the Open Philanthropy Project, with additional grants from the Leverhulme Trust and the Future of Life Institute.

The center will work on mechanisms to guarantee that the AI systems of the future will act, by design, in a way that is aligned with human values. According to Stuart Russell, “AI systems must remain under human control, with suitable constraints on behavior, despite capabilities that may eventually exceed our own. This means we need cast-iron formal proofs, not just good intentions.

Image credits: UC Berkeley. The image illustrates BRETT, the Berkeley Robot for the Elimination of Tedious Tasks, tieing a knot after watching others demonstrate it.

Reaching “longevity escape velocity”…

The concept that we may one day reach “longevity escape velocity“, a point in time when life expectancy increases by more than one year, every year, is not new. Many people believe that advances in medical and biological sciences will one day create the possibility that humans will live, if not forever, at least for millennia.

An interesting and very informative article in The Economist surveys some of the many ongoing efforts towards extending human longevity.

20160813_FBD001_1

The “low tech” approach is based on the idea that calorie restriction (CR), the consistent ingestion of significantly less calories that what is normal, will significantly prolong life. Although the evidence is scant that CR is effective in normal humans, there exists some evidence that, under this regimen, other animals (and unicellular organisms) tend to live longer. The idea is that even a life extension of a few years may take you past the threshold where medical science may extend your life for centuries. So, a Pascal’s Wager makes sense: a few decades of sacrifice, in exchange for centuries of happy life.

More high-tech approaches include genetic manipulation and the development of special drugs that may delay ageing, such as metformim, resveratrol, or rapamycin. Clinical trials are at present very limited, because ageing is not considered a disease  and, as such, anti-ageing drugs cannot get regulatory approval. Self-experimentation seems to be very common in the field, though.

Interest in this type of research is likely to increase, as the population of developed countries ages, and the prospect of significant increase of life expectancy becomes more real. Believers in the singularity have one more incentive. After all, you only need to live enough to get to the singularity.

Pokemon Go: the first step in the path to Accelerando?

The recent release of Pokemon Go,  an augmented reality mobile game attracted much attention, and made the value of its parent company, Nintendo, raise by more than 14 billion dollars. Rarely has the release of a mobile game had so much impact in the media and the financial world.

In large part, this happened because the market (and the world) are expecting this to be the first of many applications that explore the possibilities of augmented reality, a technology that superimposes the perceptions of the real and the virtual world.

Pokemon Go players, instead of staying at home playing with their cellphones, walk around the real world, looking for little monsters that appear in more or less random locations. More advanced players meet in specific places, called gyms, to have their monsters fight each other. Pokemon Go brought augmented reality into the mainstream, and may indeed represent the first of many applications that merge the real and the virtual world. The game still has many limitations in what concerns the use of augmented reality. Exact physical location, below a few feet cannot be obtained, and the illusion is slightly less than perfect. Nonetheless, the game represents a significant usage of augmented reality, a potentially disruptive technology.

Charles Stross, in the novel Accelerando, imagines a society where the hero, Manfred Macx, is one of the first to live permanently in augmented reality, looking into the world through an always-on pair of digital glasses. The glasses integrate information from the real world and the always present web. This society provides just the starting point for the novel, which recounts the story of three generations of a family as the world goes into (and emerges out of) a technological singularity.

945623pokemon

 

It is not difficult to imagine a future where digital glasses keep you informed of the name (and history, interests, and marital status) of anyone you meet in a party, where to go for your next appointment, or what are the last relevant news. Such an augmented reality world does not really require much more technology that what is available today, only the right applications and the right user interfaces.

Until we have Manfred’s glasses, we can use Pokemon Go to imagine what the fusion of real and artificial worlds will look like.

Left picture: cover of Accelerando

Right picture: The author, posing with an Oddish Pokemon monster, found in a remote town, in Portugal.

 

Superintelligence: Paths, Dangers, Strategies

A very interesting new book by Nick BostromSuperintelligence, addresses the questions that will be raised by the appearance of Artificial Intelligence (AI) Systems that are vastly smarter than humans.

So far, researchers have concentrated their efforts on the development of artificial intelligence systems that are as intelligent as humans, the so called strong AI. This is a tall order and it may yet take many years until we reach that point.

However, as Nick Bostrom points out in this book, there is no reason to believe that, once developed, strong AI systems would remain approximately as intelligent as humans. Once an AI system with human-level intelligence comes into existence, it will certainly be able to improve itself rapidly past that level.

images

As Irving John Good, a statistician that worked with Alan Turing at Bletchley Park, pointed out, a smarter than human machine is probably the last invention man will ever need to create. After that, such a machine can invent all sorts of new technologies, including the ones related with AI.

Nick Bostrom describes in a very clear and convincing way how a superintelligence may develop out of research in AI and neurosciences, using a number of different paths that may include whole brain emulation, strong artificial intelligence or highly connected communities of human brains.

IEEE Spectrum special report on the singularity

In 2008, IEEE Spectrum, the flagship publication of the Institute for Electrical and Electronic Engineers, the major professional association of this area, dedicated a full issue to the question of the singularity. This issue received an award for the best single oopic magazine issue of that year.

Screen Shot 2016-03-02 at 08.09.45

In this special report, which is as actual today as it was in 2008, a number of scientists, visionaries and engineers give their opinion on whether a singularity will or will not exist. The issue covers topics related with the singularity, such as robotics, consciousness and quantum phenomena and artificial intelligence. A must read for anyone interested in the topic, one of the best unbiased assessments of whether the singularity will or will exist.