Instantiation, another great collection of Greg Egan’s short stories

Greg Egan is a master of short-story telling. His Axiomatic collection of short stories is one of my favorites. This new collection of short stories keeps Egan’s knack for communicating deep concepts using few words and dives deeper into the concepts of virtual reality and the impacts of technology in society.

The first story, The discrete charm of the Turing machine, could hardly be more relevant these days, when the discussions on the economic impacts of Artificial Intelligence are taking place everywhere. But the main conducting line of the book is the series of stories where sentient humans who are, in fact, characters in virtual reality games, plot to break free of their slave condition. To find out whether they succeed or not, you will have to read to book yourself!

PS: As a joke, I leave here a meme of unknown origin

SIMULACRON-3: are we living in a computer simulation?

Are we living in a computer simulation? And, if so, how could we tell? This question became very popular in the last few years and has led to many articles, comments, and arguments. The simulation hypothesis which states that all of reality, including the Earth and the observable universe, could, in fact, be the result of a computer simulation is a hot topic of debate among philosophers, scientists, and SF writers.  Even the popular Saturday Morning Breakfast Cereal (SMBC) webcomic has helped clarify the issue, in a very popular strip. Greg Egan, the master of realistic SF, may have taken the matter to its ultimate consequences, with Permutation City and Instantiation, but the truth is that this question has been the subject of many books, including the famous Neuromancer, by William Gibson.

Still, to my knowledge, Simulacron-3, by Daniel Galouye, may have been the first SF book to tackle the issue head-on. For a book written more than half a century ago, the story is surprisingly modern and up-to-date. Not only the presentation of the simulated reality world is very convincing and the technology very believable, but it also turns out that the reasons why the simulated reality world (Simulacron-3) was created could be sold as a business plan for any ambitious startup today.

There is not much more that I can write about this book without depriving you of the pleasure of reading it, so let me just recommend that you get a copy from a website near you and take with you for the summer holidays.

I am a strange loop – by Douglas Hofstadter

Douglas Hofstadter has always been fond of recursion and self-referential loops, the central topic of his acclaimed “Gödel, Escher and Bach” . In his 2007 book, “I am a strange loop”, Hofstadter goes even deeper into the idea that self-referential loops are the secret item that explains consciousness and self-awareness. The idea that consciousness is the result of our ability to look inside ourselves, and to model our selves in the world, is explored in this book, together with a number of related issues.

To Hofstadter, Gödel theorem, and the way Gödel has shown that any sufficiently complex mathematical system can be used to assert things about itself, is strongly related with our ability to reflect into our own selves, the phenomenon that, according to the author, creates consciousness.

Hofstadter uses the terms “soul” and “consciousness” almost interchangeably, meaning that, to him, our soul and our consciousness – our inner light – are one and the same. Other animals may have souls, such as dogs or cats (but not mosquitoes) although “smaller” and less complex than ours. One of the strongest ideas of the book, much cherished by the author, is that your soul is mostly contained within your brain but is also present, at varying lower levels of fidelity, in the brains of other people that know you and that have models of you inside their own brains.

In the process of describing these ideas, Hofstadter also dispatches with a few “sacred cows”, such as the idea that “zombies” are possible, even in principle, the “inverted spectrum” conundrum (is your red the same as my red?) and the “impossible” – to him- idea of free will.

The Fabric of Reality

The Fabric of Reality, a 1997 book by David Deutsch, is full of great ideas, most of them surprising and intriguing. The main argument is that explanations are the centerpiece of science and that four theories play an essential role in our understanding of the world: quantum theory, the theory of evolution, the theory of computation and epistemology (the theory of knowledge).

You may raise a number of questions about these particular choices, such as why is the theory of relativity not there or why is the theory of evolution simply not a result of other theories in physics or even what makes epistemology to special. You will have to read the book to find out but the short answer is that not everything is physics and that theories at many levels are required to explain the world. Still, in physics, the most fundamental idea is quantum theory and it has profound impacts on our understanding of the universe. Perhaps the most significant impact comes from the fact that (according to Deutsch) what we know about quantum theory implies that we live in a multiverse. Each time a quantum phenomenon can conduct to more than one observable result, the universe splits into as many universes as the number of possible results, universes that exist simultaneously in the multiverse.

Although the scientific establishment views the multiverse theory with reservation, to say the least, to Deutsch, the multiverse is not just a theory, but the only possible explanation for what we know about quantum physics (he dismisses the Copenhagen interpretation as nonsense). Armed with these four theories, and the resulting conclusion that we live in a multiverse, Deutsch goes on to address thought-provoking questions, such as:

  • Is life a small thing at the scale of the universe or, on the contrary, is the most important thing on it?
  • Can we have free will, in a deterministic universe? And in the multiverse?
  • Do computers strictly more powerful than Turing machines exist, and how do they work?
  • Can mathematical proofs provide us with absolute certainties about specific mathematical statements?
  • Is time travel possible, at least in principle, either in the physical world or in a virtual reality simulator?
  • Will we (or our descendants, or some other species) eventually become gods, when we reach the Omega point?

The idea of the multiverse is required to answer most, if not all, of these questions. Deutsch is certainly not a parsimonious person when he uses universes to answer questions and to solve problems. The multiverse allows you to have free will, solves the paradoxes of time travel and makes quantum computers possible, among many other things. One example of the generous use of universes made by Deutsch is the following sentence:

When a quantum factorization engine is factorizing a 250-digit number, the number of interfering universes will be of the order of 10 to the 500. This staggeringly large number is the reason why Shor’s algorithm makes factorization tractable. I said that the algorithm requires only a few thousand arithmetic operations. I meant, of course, a few thousand operations in each universe that contributes to the answer. All those computations are performed in parallel, in different universes, and share their results through interference.

The fact that Deutsch’s arguments depend so heavily on the multiverse idea makes this book much more about the multiverse than about the other topics he addresses. After all, if the multiverse theory is wrong, many of Deutsch’s explanations collapse, interesting as they may be.

Still, the book is full of great ideas, makes for some interesting reading, and presents many interesting concepts, some of them further developed in other books by Deutsch, such as The Beginning of Infinity.

Virtually Human: the promise of digital immortality

Martine Rothblatt’s latest book, Virtually Human, the promise – and the peril – of digital immortality, recommended by none less than the likes of Craig Venter and Ray Kurzweil, is based on an interesting premise, which looks quite reasonable in principle.

Each one of us leaves behind such a large digital trace that it could be used, at least in principle, to teach a machine to behave like the person that generated the trace. In fact, if you put together all the pictures, videos, emails and messages that you generate in a lifetime, together with additional information like GPS coordinates, phone conversations, and social network info, there should be enough information for the right software to learn to behave just like you.

Rothblatt imagines that all this information will be stored in what she calls a mindfile and that such a mindfile could be used by software (mindware) to create mindclones, software systems that would think, behave and act like the original human that was used to create the mindfile. Other systems, similar to these, but not based on a copy of a human original, are called bemans, and raise similar questions. Would such systems have rights and responsibilities, just like humans? Rothblatt argues forcefully that society will have to recognize them as persons, sooner or later. Otherwise, we would assist to a return to situations that modern societies have already abandoned, like slavery, and other practices that disrespect basic human rights (in this case, mindclone and beman’s rights).

Most of the book is dedicated to the analysis of the social, ethical, and economic consequences of an environment where humans live with mindclones and bemans. This analysis is entertaining and comprehensive, ranging from subjects as diverse as the economy, human relations, families, psychology, and even religion.  If one assumes the technology to create mindclones will happen, thinking about the consequences of such a technology is interesting and entertaining.

However, the book falls short in that it does not provide any convincing evidence that the technology will come to exist, in any form similar to the one that is assumed so easily by the author. We do not know how to create mindware that could interpret a mindfile and use it to create a conscious, sentient, self-aware system that is indistinguishable, in its behavior, from the original. Nor are we likely to find out soon how such a mindware could be designed. And yet, Rothblatt seems to think that such a technology is just around the corner, maybe just a few decades away. All in all, it sounds more like (poor) science fiction than the shape of things to come.

Crystal Nights

Exactly 80 years ago, Kristallnacht (the night of the crystals) took place in Germany, in the night from the 9th to the 10th of November. Jews were persecuted and killed, and their property was destroyed, in an event that is an important marker in the rise of the anti-semitism movement that characterized Nazi Germany. The name comes from the many windows of Jewish-owned stores broken during that night.

Greg Egan, one of my favorite science fiction writers, wrote a short story inspired in that same night, entitled Crystal Nights. This (very) short story is publicly available (you can find it here ) and is definitely worth reading. I will not spoil the ending here, but it has to do with computers and singularities. The story was also included in a book that features other short stories by Greg Egan.

If you like this story, maybe you should check other books by Egan, such as Permutation City, Diaspora or Axiomatic (another collection of short stories).

MIT distances itself from Nectome, a mind uploading company

The MIT Media Lab, a unit of MIT, decided to sever the ties that connected it with Nectome, a startup that proposes to make available a technology that processes and chemically preserves a brain, down to its most minute details, in order to make it possible, at least in principle, to simulate your brain and upload your mind, sometime in the future.

According to the MIT news release, “MIT’s connection to the company came into question after MIT Technology Review detailed Nectome’s promotion of its “100 percent fatal” technology” in an article posted in the MIT Technology Review site.

As reported in this blog, Nectome claims that by preserving the brain, it may be possible, one day, “to digitize your preserved brain and use that information to recreate your mind”. Nectome acknowledges, however, that the technology is fatal to the brain donor and that there are no warranties that future recovery of the memories, knowledge and personality will be possible.

Detractors have argued that the technology is not sound, since simulating a preserved brain is a technology that is at least many decades in the future and may even be impossible in principle. The criticisms were, however, mostly based on the argument the whole enterprise is profoundly unethical.

This kind of discussion between proponents of technologies aimed at performing whole brain emulation, sometimes in the future, and detractors that argue that such an endeavor is fundamentally flawed, has occurred in the past, most notably a 2014 controversy concerning the objectives of the Human Brain Project. In this controversy, critics argued that the goal of a large-scale simulation of the brain is premature and unsound, and that funding should be redirected towards more conventional approaches to the understanding of brain functions. Supporters of the Human Brain Project approach argued that reconstructing and simulating the human brain is an important objective in itself, which will bring many benefits and advance our knowledge of the brain and of the mind.

Picture by the author.

LIFE 3.0: Being Human in the Age of Artificial Intelligence

Max Tegmark’s latest book, LIFE 3.0: Being Human in the Age of Artificial Intelligence, is an enthralling journey into the future, when the developments in artificial intelligence create a new type of lifeform on Earth.

Tegmark proposes to classify life in three stages. Life 1.0, unintelligent life, is able to change its hardware and improve itself only through the very slow and blind process of natural evolution. Single cell organisms, plants and simple animals are in this category. Life 2.0 is also unable to change its hardware (excepto through evolution, as for Life 1.0) but can change its software, stored in the brains, by using previous experience to learn new behaviors. Higher animals and humans, in particular, belong here. Humans can now, up to a limited point, change their hardware (through prosthetics, cellphones, computers and other devices) so they could also be considered now Life 2.1.

Life 3.0 is the new generation of life, which can change both its software and its hardware. The ability to change the computational support (i.e., the physical basis of computation) results from technological advances, which will only accelerate with the advent of Artificial General Intelligence (AGI). The book is really about the future of a world where AGI enables humanity to create a whole range of new technologies, and expand new forms of life through the cosmos.

The riveting prelude, The Tale of the Omega Team, is the story of the group of people who “created” the first intelligence explosion on planet Earth makes this a “hard-to-put-down” book.  The rest of the book goes through the consequences of this intelligence explosion, a phenomenon the author believes will undoubtedly take place, sooner or later. Chapter 4 focus on the explosion proper, and on how it could happen. Chapter 5, appropriately titled “Aftermath: The Next 10,000 Years” is one of the most interesting ones, and describes a number of long term scenarios that could result from such an event. These scenarios range from a benevolent and enlightened dictatorship (by the AI) to the enslaved God situation, where humanity keeps the AI in chains and uses it as a slave to develop new technologies, inaccessible to unaided humanity’s simpler minds. Always present, in these scenarios, are the risks of a hostile takeover by a human-created AGI, a theme that this book also addresses in depth, following on the ideas proposed by Nick Bostrom, in his book Superintelligence.

Being a cosmologist, Tegmark could not leave out the question of how life can spread through the Cosmos, a topic covered in depth in chapter 6, in a highly speculative fashion. Tegmark’s view is, to say the least, grandiose, envisaging a future where AGI will make it possible to spread life through the reachable universe, climbing the three levels of the Kardashev scale. The final chapters address (in a necessarily more superficial manner) the complex topics of goal setting for AI systems and artificial (or natural) consciousness. These topics somehow felt less well developed and more complete and convincing treatments can be found elsewhere. The book ends with a description of the mission of the Future of Life Institute, and the Asilomar AI Principles.

A book like this cannot leave anyone indifferent, and you will be likely to take one of two opposite sides: the optimistis, with many famous representatives, including Elon Mush, Stuart Russel and Nick Bostrom, who believe AGI can be developed and used to make humanity prosper; or the pessimists , whose more visible member is probably Yuval Noah Harari, who has voiced very serious concerns about technology developments in his book Homo Deus and in this review of Life 3.0.

Portuguese Edition of The Digital Mind

IST Press, the publisher of Instituto Superior Técnico, just published the Portuguese edition of The Digital Mind, originally published by MIT Press.

The Portuguese edition, translated by Jorge Pereirinha Pires, follow the same organization and has been reviewed by a number of sources. The back-cover reviews are by Pedro Domingos, Srinivas Devadas, Pedro Guedes de Oliveira and Francisco Veloso.

A pre-publication was made by the Público newspaper, under the title Até que mundos digitais nos levará o efeito da Rainha Vermelha, making the first chapter of the book publicly available.

There are also some publicly available reviews and pieces about this edition, including an episode of a podcast and a review in the radio.

The Great Filter: are we rare, are we first, or are we doomed?

Fermi’s Paradox (the fact that we never detected any sign of aliens even though, conceptually, life could be relatively common in the universe) has already been discussed in this blog, as new results come in about the rarity of life bearing planets, the discovery of new Earth-like planets, or even the detection of possible signs of aliens.

There are a number of possible explanations for Fermi’s Paradox and one of them is exactly that sufficiently advanced civilizations could retreat into their own planets, or star systems, exploring the vastness of the nano-world, becoming digital minds.

A very interesting concept related with Fermi’s Paradox is the Great Filter theory, which states, basically, that if intelligent civilizations do not exist in the galaxy we, as a civilization, are either rare, first, or doomed. As this post very clearly describes, one of these three explanations has to be true, if no other civilizations exist.

The Great Filter theory is based on Robin Hanson’s argument that the failure to find any extraterrestrial civilizations in the observable universe has to be explained by the fact that somewhere, in the sequence of steps that leads from planet formation to the creation of technological civilizations, there has to be an extremely unlikely event, which he called the Great Filter.

This Great Filter may be behind us, in the process that led from inorganic compounds to humans. That means that we, intelligent beings, are rare in the universe. Maybe the conditions that lead to life are extremely rare, either due to the instability of planetary systems, or to the low probability that life gets started in the first place, or to some other phenomenon that we were lucky enough to overcome.

It can also happen that conditions that make possible the existence of life are relatively recent in the universe. That would mean that conditions for life only became common in the universe (or the galaxy) in the last few billions years. In that case, we may not be rare, but we would be the first, or among the first, planets to develop intelligent life.

The final explanation is that the Great Filter is not behind us, but ahead of us. That would mean that many technological civilizations develop but, in the end, they all collapse, due to unknown factors (some of them we can guess). In this case, we are doomed, like all other civilizations that, presumably, existed.

There is, of course, another group of explanations, which states that advanced civilizations do exist in the galaxy, but we are simply too dumb to contact or to observe them. Actually, many people believe that we should not even be trying to contact them, by broadcasting radio-signals into space, advertising that we are here. It may, simply, be too dangerous.

 

Image by the Bureau of Land Management, available at Wikimedia Commons