To Be a Machine: Adventures Among Cyborgs, Utopians, and the Futurists Solving the Modest Problem of Death

Mark O’Connell witty, insightful and sometimes deeply moving account of his research on the topic of transhumanism deserves a place in the bookshelf of anyone interested in the future of humanity. Reading To Be a Machine is a delightful trip through the ideals, technologies, places and characters involved in transhumanism, the idea that science and technology will one day transform human into immortal computer based lifeforms.

For reasons that are not totally clear to me, transhumanism remains mostly a fringe culture, limited to a few futurists, off-the-mainstream scientists and technology nuts. As shared fictions go (to use Yuval Harari’s notation), I would imagine transhumanism is one idea whose time has come. However, it remains mostly unknown by the general public. While humanists believe that the human person, with his/her desires, choices, and fears, should be the most important value to be preserved by a society (check my review of Homo Deus), transhumanists believe that biological based intelligence is imperfect, exists purely because of historical reasons (evolution, that is) and will go away soon as we move intelligence into other computational supports, more robust than our frail bodies.

O’Connell, himself a hard-core humanist, as becomes clear from reading between the lines of this book, pursued a deep, almost forensic, investigation on what transhumanists are up to. In this process, he talks with many unusual individuals involved in the transhumanist saga, from Max More, who runs Alcor, a company that, in exchange for a couple hundred dollars, will preserve your body for the future in liquid nitrogen (or 80k for just the head) to Aubrey de Grey, a reputed scientist working in life extension technologies, who argues that we should all be working on this problem. In de Grey’s words, cited by O’Connell “aging is a human disaster on an unimaginably vast scale, a massacre, a methodical and comprehensive annihilation of every single person that ever lived“. These are just two of the dozens of fascinating characters in the book interviewed in place by O’Connell.

The narrative is gripping, hilarious at times, but moving and compelling, not the least because O’Connell himself provides deep insights about the issues the book discusses. The characters in the book are, at once, alien and deeply human, as they are only trying to overcome the limits of our bodies. Deservedly, the book has been getting excellent reviews, from many sources.

In the end, one gets the idea that transhumanists are crazy, maybe, but not nearly as crazy as all other believers in immortality, be it by divine intervention, by reincarnation, or by any other mechanisms so ingrained in mainstream culture.

Homo Deus: A Brief History of Tomorrow

Homo Deus, the sequel to the wildly successful hit Sapiens, by Yuval Harari, aims to chronicle the history of tomorrow and to provide us with a unique and dispassionate view of the future of humanity. In Homo Deus, Harari develops further the strongest idea in Sapiens, the idea that religions (or shared fictions) are the reason why humanity came to dominate the world.

Many things are classified by Harari as religions, from the traditional ones like Christianism, Islamism or Hinduism, to other shared fictions that we tend not to view as religions, such as countries, money, capitalism, or humanism. The ability to share fictions, such as these, created in Homo sapiens the ability to coordinate enormous numbers of individuals in order to create vast common projects: cities, empires and, ultimately, modern technology. This is the idea, proposed in Sapiens, that Harari develops further in this book.

Harari thinks that, with the development of modern technology, humans will doggedly pursue an agenda consisting of three main goals: immortality, happiness and divinity. Humanity will try to become immortal, to live in constant happiness and to be god-like in its power to control nature.

The most interesting part of the book is in middle, where Harari analyses, in depth, the progressive but effective replacement of ancient religions by the dominant modern religion, humanism. Humanism, the relatively recent idea that there is a unique spark in humans, that makes human life sacred and every individual unique. Humanism therefore believes that meaning should be sought in the individual choices, views, and feelings, of humans, replaced almost completely traditional religions (some of them with millennia), which believed that meaning was to be found in ancient scriptures or “divine” sayings.

True, many people still believe in traditional religions, but with the exception of a few extremist sects and states, these religions plays a relatively minor role in conducting the business of modern societies. Traditional religions have almost nothing to say about the key ideas that are central to modern societies, the uniqueness of the individual and the importance of the freedom of choice, ideas that led to our current view of democracies and ever-growing market-oriented economies. Being religious, in the traditional sense, is viewed as a personal choice, a choice that must exist because of the essential humanist value of freedom of choice.

Harari’s description of the humanism schism, into the three flavors of liberal humanism, socialist humanism, and evolutionary humanism (Nazism and other similar systems), is interesting and entertaining. Liberal humanism, based on the ideals of free choice, capitalism, and democracy, has been gaining the upper hand in the twentieth century, with occasional relapses, over socialism or enlightened dictatorships.

The last part of the book, where one expects Harari to give us a hint of what may come after humanism, once technology creates systems and machines that make humanist creeds obsolete, is rather disappointing. Instead of presenting us with the promises and threats of transhumanism, he clings to common clichés and rather mundane worries.

Harari firmly believes that there are two types of intelligent systems: biological ones, which are conscious and have, possibly, some other special properties, and the artificial ones, created by technology, which are not conscious, even though they may come to outperform humans in almost every task. According to him, artificial systems may supersede humans in many jobs and activities, and possibly even replace humans as the intelligent species on Earth, but they will never have that unique spark of consciousness that we, humans, have.

This belief leads to two rather short-sighted final chapters, which are little more than a rant against the likes of Facebook, Google, and Amazon. Harari is (and justifiably so) particularly aghast with the new fad, so common these days, of believing that every single human experience should go online, to make shareable and give it meaning. The downsize is that this fad provides data to the all-powerful algorithms that are learning all there is to know about us. I agree with him that this is a worrying trend, but viewing it as the major threat of future technologies is a mistake. There are much much more important issues to deal with.

It is not that these chapters are pessimistic, even though they are. It is that, unlike in the rest of Homo Deus (and in Sapiens), in these last chapters Harari’s views seem to be locked inside a narrow and traditionalist view of intelligence, society, and, ultimately, humanity.

Other books, like SuperintelligenceWhat Technology Wants or The Digital Mind provide, in my opinion, much more interesting views on what a transhumanist society may come to be.

The Digital Mind: How Science is Redefining Humanity

Following the release in the US,  The Digital Mind, published by MIT Press,  is now available in Europe, at an Amazon store near you (and possibly in other bookstores). The book covers the evolution of technology, leading towards the expected emergence of digital minds.

Here is a short rundown of the book, kindly provided by yours truly, the author.

New technologies have been introduced in human lives at an ever increasing rate, since the first significant advances took place with the cognitive revolution, some 70.000 years ago. Although electronic computers are recent and have been around for only a few decades, they represent just the latest way to process information and create order out of chaos. Before computers, the job of processing information was done by living organisms, which are nothing more than complex information processing devices, created by billions of years of evolution.

Computers execute algorithms, sequences of small steps that, in the end, perform some desired computation, be it simple or complex. Algorithms are everywhere, and they became an integral part of our lives. Evolution is, in itself, a complex and long- running algorithm that created all species on Earth. The most advanced of these species, Homo sapiens, was endowed with a brain that is the most complex information processing device ever devised. Brains enable humans to process information in a way unparalleled by any other species, living or extinct, or by any machine. They provide humans with intelligence, consciousness and, some believe, even with a soul, a characteristic that makes humans different from all other animals and from any machine in existence.

But brains also enabled humans to develop science and technology to a point where it is possible to design computers with a power comparable to that of the human brain. Artificial intelligence will one day make it possible to create intelligent machines and computational biology will one day enable us to model, simulate and understand biological systems and even complete brains with unprecedented levels of detail. From these efforts, new minds will eventually emerge, minds that will emanate from the execution of programs running in powerful computers. These digital minds may one day rival our own, become our partners and replace humans in many tasks. They may usher in a technological singularity, a revolution in human society unlike any other that happened before. They may make humans obsolete and even a threatened species or they make us super-humans or demi-gods.

How will we create these digital minds? How will they change our daily lives? Will we recognize them as equals or will they forever be our slaves? Will we ever be able to simulate truly human-like minds in computers? Will humans transcend the frontiers of biology and become immortal? Will humans remain, forever, the only known intelligence in the universe?

 

Is mind uploading nearer than you might think?

A recent article published in The Guardian, an otherwise mainstream newspaper, openly discusses the fact that mind uploading may become a real possibility in the near future. Mind uploading is based on the concept that the behavior of a brain can be emulated completely in a computer, ultimately leading to the possibility of transporting individual brains, and individual consciousnesses, into a program, which would emulate the behavior of the “uploaded” mind. Mind uploading represents, in practice, the surest and most guaranteed way to immortality, far faster than any other non-digital technologies can possibly aim to achieve in the foreseeable future.

This idea is not new, and the article makes an explicit reference to Hans Moravec book, The Mind Children, published by Harvard University Press in 1988. In fact, the topic has been already been addressed by a large number of authors, including Ray Kurzweil, in The Singularity is Near, Nick Bostrom, in Superintelligence, and even by me in The Digital Mind.

The article contains an interesting list of interesting sites and organizations, including CarbonCopies, a site dedicated to making whole brain emulation possible, founded by Randal A Koene, and a reference to the 2045 initiative, with similar goals, created by Dmitry Itskov.

The article, definitely worthwhile reading, goes into some detail in the idea of “substrate independent minds”, an idea clearly reminiscent of the concept of virtualization, so in vogue in today’s business world.

Picture source: The Guardian

Black Mirror, a glimpse of the (near) future

 

If you didn’t yet watch any episodes of Black Mirror, a British series created by Charlie Brooker, go and fix that now. The 12 episodes of Black Mirror have been rated by The Wrap from “Good” to “Mind Blowing”, and they all cover the anticipated and non-anticipated consequences of new technologies.

According to the series creator, “each episode has a different cast, a different setting, even a different reality. But they’re all about the way we live now – and the way we might be living in 10 minutes’ time if we’re clumsy.” 

The series analyses, sometimes in excruciating ways, how new technologies, such as social networks, virtual reality, genetic engineering, and artificial intelligence, can lead to unexpected, if plausible, lifestyles, problems and challenges.

Inching towards an exascale supercomputer

The Sunway TaihuLight became, as of June 2016, the fastest supercomputer in the world. At this time, the Top 500 ranking was rearranged to put this computer ahead of TianHe-2 (also from China). Sunway TaihuLight clocked in at 93 petaflop/sec (93,000,000,000,000,000 floating point operations per second)  using its 10 million cores This performance compares with the 34 petaflop/sec for the 3 million core TianHe-2. An exascale computer would have a performance of 1000 petaflops/sec.

What is maybe even more important, is that the new machine uses 14% less power than TianHe-2 (it uses a mere 15.3 MW), which makes it more than three times as efficient.

Mjc4OTczNg

As IEEE Spectrum reports, “TaihuLight uses DDR3, an older, slower memory, to save on power“. Furthermore, it tries to use small amounts of local memory near each core instead of a more traditional (and power demanding) memory hierarchy. Other architectural choices aimed at reducing the power while preserving the performance.

It is interesting to compare the power efficiency of this supercomputer with that of the human brain. Imagine that this supercomputer is used to simulate a full human brain (with its 86 billion neurons), using a standard neuron simulator package, such as NEURON.

Using some reasonable assumptions, it is possible to estimate that such a simulation would proceed at a speed about 3 million times slower than real time, and would require about three trillion times more energy than the human brain, to perform equivalent calculations. In terms of speed and power efficiency, it is still hard to compete with the 20W human brain.

 

Are we living in a computer simulation?

The idea that the Earth, its inhabitants and the whole universe could be just a computer simulation is not new. Many have argued that intelligent agents simulated in a computer are not necessarily aware they are part of a computer simulation. Nick Bostrum, author of Supperintelligence and professor at Oxford, suggested in 2003 that members of an advanced civilization with enormous computing power might decide to run simulations of their ancestors.

Of course, no computer simulation created by mankind was ever able to simulate realities as complex as our world, nor beings as intelligent as humans. Current computer technology is not powerful enough to simulate worlds with that level of complexity. However, more advanced computer technologies could be used to simulate much more complex virtual realities, possibly as complex as our own reality.

A recent article in Scientific American about this topic includes opinions from many well known scientists. Neil deGrasse Tyson, well-known for the series Cosmos, put the odds at 50-50 that our entire existence is a program on someone else’s hard drive. Max Tegmark, a cosmologist at MIT) pointed out that “If I were a character in a computer game, I would also discover eventually that the rules seemed completely rigid and mathematical,” just as our universe.

This week the topic came to the forefront, at the Code Conference 2016, where Elon Musk said that “we’re probably characters in some advanced civilisation’s video game“.  His argument is that “If you assume any rate of improvement at all, then the games will become indistinguishable from reality, even if that rate of advancement drops by a thousand from what it is now. Then you just say, okay, let’s imagine it’s 10,000 years in the future, which is nothing on the evolutionary scale.

Therefore, if you assume this rate of evolution lasts for a few centuries, computer games will become indistinguishable from reality and we may well be inside one of those.

MareNostrum_III_superior_3

To be fair, there are many things that could be interpreted as signs that we do live, indeed, inside a computer simulation. The strangeness of quantum computing, the vastness and the many inexplicable coincidences of the universe, the unexplained start of the evolutionary process, are all things that could be easily explained by the “simulated world” hypothesis.

This topic has, of course, already been fully addressed by Zach Weiner in a brilliant SMBC strip.

Pictured, the Marenostrun supercomputer, in a photo by David Abián, available at Wikimedia Commons.